Processing math: 100%

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Publications

2020
Huang, C. ; Yermiyahu, U. ; Shenker, M. ; Ben-Gal, A. . Effect Of Leaching Events On The Fate Of Polyhalite Nutrient Minerals Used For Crop Fertilization. JOURNAL OF PLANT NUTRITION 2020, 43, 2518-2532.Abstract
Polyhalite is a natural mineral containing potassium (K), calcium (Ca), magnesium (Mg) and sulfur (S) and is proposed as a fertilizer source for these essential nutrients. Application of polyhalite is expected to be most relevant in soils where the availability of these nutrients is low: in sandy soils, in highly leached soils, or in areas where crops are irrigated by water with low content of these nutrients or are rain-fed. A controlled lysimeter experiment investigated the efficacy of surface applied polyhalite as a fertilizer supplying K, Ca, Mg and S compared to soluble sulfate salts in two soils (sandy and loamy) with or without simulated rain leaching events through two cycles of cropping. In the first cycle, carrot response and nutrient uptake, transport, and loss through leaching were studied, while in the second cycle the residual effect of the fertilizer was considered on maize without additional fertilizer application or leaching. Polyhalite plus rain led to increased carrot yield due to augmented Ca uptake in sandy soil. In both soils, polyhalite behaved as a prolonged availability fertilizer with more nutrients retained in the top soil layer and not leached below the root zone. The treatments did not affect maize growth or nutrient uptake except for lower K and S uptake in soils where rain had been simulated for the previous crop. We conclude that polyhalite shows potential as a commercial fertilizer to supply K, Ca, Mg, and S nutrients under conditions of dryland agriculture where occasionally leaching by rainfall occurs.
Bhaduri, B. ; Polubesova, T. . Facile Synthesis Of Carbon-Supported Silver Nanoparticles As An Efficient Reduction Catalyst For Aqueous 2-Methyl-P-Nitrophenol. MATERIALS LETTERS 2020, 267.Abstract
A facile technique for preparing the stable Ag nanoparticles (NPs) of 5-19 nm average size, anchored onto the heat-treated melamine-oxalic acid supramolecular complex is demonstrated. The synthesized material is tested for its catalytic efficiency towards reduction of aqueous 2-CH3-p-nitrophenol to aminophenol using NaBH4 as reducing agent at 28 degrees C. The reaction followed the pseudo first-order kinetics with respect to the nitrophenol concentrations, and the reaction rate constant was determined to be greater than the reported literature values. The superior catalytic activity of the catalyst was attributed to the combined roles of the Ag NPs and carbon substrate enriched with nitrogen functional groups. Notably, the prepared catalyst sustained its reactivity even after eight consecutive test runs without leaching of the metal NPs in the reaction mixture. The results clearly indicate the organic complex precursor-based carbon supported Ag NPs to be an efficient catalyst for removal of recalcitrant organic compounds from wastewater by reduction. (C) 2020 Elsevier B.V. All rights reserved.
Schwartz, N. ; Levy, L. ; Carmeli, B. ; Radian, A. . Spectral Induced Polarization Of Clay-Oxide Hybrid Particles. JOURNAL OF COLLOID AND INTERFACE SCIENCE 2020, 577, 173-180.Abstract
The properties of clays and oxides govern many environmental processes, consequently, ongoing effort is invested in developing non-destructive, in-situ analytical tools that reflect these properties. Herein, the physicochemical properties of montmorillonite (MMT) and iron-oxide coated montmorillonite (FeOx-MMT) were characterized using common analytical techniques, and the results were compared to spectral induced polarization (SIP) measurements. FeOx-MMT particles showed a lower CEC, higher pH dependency of the surface charge, and lower suspension stability. Also, the size of the primary particles increased following iron-oxide deposition. SIP measurements over a range of salinities showed that the effective polarization length of the clays was in the order of several microns, suggesting the measurements of aggregates (not primary particles). Moreover, FeOx-MMT particles were more compact than MMT, and their size decreased with increasing salinity due to compaction of the EDL and arrangement of primary particles in the aggregate. The SIP-response to pH changes agreed with zeta potential measurements; at low pH values, MMT exhibited higher polarization due to the higher CEC. However, at a high pH, the differences diminish due to deprotonation of the Fe-OH surface groups. These findings suggest that SIP is a sensitive method that can detect changes in the surface chemistry of soil particles. (C) 2020 Elsevier Inc. All rights reserved.
Zaarur, S. ; Stein, M. ; Adam, O. ; Mingram, J. ; Liu, J. ; Wu, J. ; Raveh-Rubin, S. ; Erel, Y. . Synoptic Stability And Anomalies In Ne China Inferred From Dust Provenance Of Sihailongwan Maar Sediments During The Past Similar To 80 Kyr. QUATERNARY SCIENCE REVIEWS 2020, 239.Abstract
The paleo-synoptic conditions that prevailed during the past similar to 80 kyr in northeastern China are inferred from the elemental and Sr-Nd isotopic compositions of Lake Sihailongwan Maar sediments. The detrital fraction in the lake sediments is dominated by aeolian input of felsic-rock origin, with little contribution of local volcanic material. Based on the isotopic Sr-Nd composition of the lake core-sediments, we postulate that the deserts of northern China are the main source of allochthonous particles to the lake throughout the past similar to 80 kyr. Northwesterly winds associated with the East Asian winter monsoon and high latitude westerlies are the main carriers of dust from these deserts to the lake. The deserts of central China are an additional minor dust source. The episodic dust input from these deserts results from anomalous dry southwesterly winds. These could be related to either El Nino conditions, or to delays in the onset of the East Asian summer monsoon rains. (C) 2020 Elsevier Ltd. All rights reserved.
Kaya, A. U. ; Guner, S. ; Ryskin, M. ; Lameck, A. S. ; Benitez, A. R. ; Shuali, U. ; Nir, S. . Effect Of Microwave Radiation On Regeneration Of A Granulated Micelle-Clay Complex After Adsorption Of Bacteria. APPLIED SCIENCES-BASEL 2020, 10.Abstract
Granulated micelle-clay complexes including the organic cation octadecyltrimethylammonium (ODTMA) were shown to be efficient in removal of total bacteria count (TBC) from water. Microwave (MW) heating of granules to restore bacterial removal was investigated. Drying of granules by MW required 20-fold less energy than by conventional heating. When water content of granules approached 10%, or less, their heating period by MW had to be below 1 min, e.g., 30 s, and less, in order to avoid ignition and irreversible structural changes. Structural and thermal properties of MW heated samples were studied by FT-IR spectra and thermo gravimetric analyses (TGA). Inactivation of bacteria in water was more efficient by MW than by conventional oven, or by electric plate. For elimination of bacteria from water, MW heating was at least five-fold more efficient than by conventional heating. The results have established an adequate regeneration procedure by MW heating at durations depending on the remaining percentage of water associated with the granules. Tests of first and second regenerations by MW heating, and HCl washing of columns, were carried out. It was concluded that MW treatment may be chosen for optimal regeneration of the granulated micelle-clay complex as an efficient and low-cost procedure.
Topaz, T. ; Egozi, R. ; Suari, Y. ; Ben-Ari, J. ; Sade, T. ; Chefetz, B. ; Yahel, G. . Environmental Risk Dynamics Of Pesticides Toxicity In A Mediterranean Micro-Estuary. ENVIRONMENTAL POLLUTION 2020, 265.Abstract
Pesticides are potentially toxic to aquatic systems, even at low concentration, depending on their individual ecotoxicological properties and their mixture composition. Thus, to evaluate possible ecological stress due to pesticide load, a thorough assessment of the potential toxicity of pesticide mixtures is required. Here we report water discharge and quality data of an eastern Mediterranean micro-estuary (Alexander stream), targeting the temporal distribution of a pesticide mixture. Over 150 water samples were collected during 2 hydrological years representing base-flow and flood conditions. On average, each water sample contained 34 and 45 different pesticides with peak concentrations of 1.4 mu g L-1 of Imidacloprid and 55 mu g L-1 of Diuron during base-flow and flood events, respectively. Pesticide mixtures were potentially toxic to benthic invertebrates and algae during flood events, surpassing the toxicity benchmark with medians of 110% and 155%, respectively. The herbicide Diuron and the insecticide Imidacloprid were the main pesticides responsible for the high potential toxicity during flood events. The falling limb of the flood hydrographs was found to inflict the highest stress on the estuarine environment due to elevated toxicity combined with prolonged residence time of the water. Examination of the potential chronic toxicity of single compounds showed continuous stress for plants, algae, amphibians, crustaceans, insects and fish from nine pesticides. Our data show that the ecosystem of the Alexander micro-estuary is under a continuous chronic stress with acute peaks in potential toxicity during flood events and the period that follows them. We propose that analyzing a small set of flood-tail samples is needed for the evaluation of small estuarine ecosystems risk during the rainy season. From a management perspective, we suggest better control of application practices for Diuron in the watershed to minimize the stress to the estuarine ecosystem. (C) 2020 Elsevier Ltd. All rights reserved.
Schapira, M. ; Manor, O. ; Golan, N. ; Kalo, D. ; Mordehay, V. ; Kirshenbaum, N. ; Goldsmith, R. ; Chefetz, B. ; Paltiel, O. . Involuntary Human Exposure To Carbamazepine: A Cross-Sectional Study Of Correlates Across The Lifespan And Dietary Spectrum. ENVIRONMENT INTERNATIONAL 2020, 143.Abstract
Treated wastewater (TWW) is increasingly used for agricultural irrigation, especially in arid and semi-arid regions. Carbamazepine is among the most frequently detected pharmaceuticals in TWW. Moreover, its uptake and accumulation have been demonstrated in crops irrigated with TWW. A previous controlled trial found that urine concentrations of carbamazepine were higher in healthy volunteers consuming TWW-irrigated produce as compared to freshwater-irrigated produce. The aim of the current study was to assess whether carbamazepine is quantifiable in urine of Israelis consuming their usual diets and whether concentrations vary according to age, personal characteristics and diet. In this cross-sectional study, we recruited 245 volunteers, including a reference group of omnivorous healthy adults aged 18-66; pregnant women; children aged 3-6 years; adults aged > 75 years; and vegetarians/vegans. Participants provided spot urine samples and reported 24-hour and usual'' dietary consumption. Urinary carbamazepine levels were compared according to group, personal characteristics, health behaviors, and reported diet. Carbamazepine was detectable (>= 1.66 ng/L) in urine of 84%, 76%, 75.5%, 66%, and 19.6% of the reference group, vegetarians, older adults, pregnant women, and children, respectively. Quantifiable concentrations (>= 5.0 ng/L) of carbamazepine were found in 58%, 46%, 36.7%, 14%, and 0% of these groups, respectively (p = 0.001 for comparison of proportions across groups). In adults, higher carbamazepine concentrations were significantly associated (p < 0.05) with self-defined vegetarianism, usual consumption of dairy products and at least five vegetables/day, and no meat or fish consumption in the past 24 hours. This study demonstrates that people living in a water-scarce region with widespread TWW irrigation, are unknowingly exposed to carbamazepine. Individuals adhering to recommended guidelines for daily fresh produce consumption may be at higher risk of exposure to TWW-derived contaminants of emerging concern.
Wang, Z. ; Wallach, R. . Effects Of Time-Dependent Contact Angle On Wettability Of Subcritically Water-Repellent Soils. WATER RESOURCES RESEARCH 2020, 56.Abstract
Recent studies have indicated that under certain conditions, most soils are water repellent to some degree, which impacts agricultural fields, pastures, forests, grasslands, and turf areas. Soil water repellency originates from amphiphilic molecules that reorient during contact with water. However, models to describe the flow in soils affected by time-dependent contact angle (CA(t)) are still lacking. The current study aims to close this gap. The measured CA(t) for an oleic acid-coated glass surface and a uniform capillary tube indicated that the initial CA was substantially higher for the latter. However, the rate of CA decrease was similar for both cases in spite of the fact that the contact area between the water and the tube wall continuously increases by the capillary rise. This indicates that the amphiphilic molecules reorientation at the vicinity of the contact line rather than at the wetted tube area controls the CA dynamics. A mathematical model for flow in a uniform and sinusoidal capillary tube with CA(t) < 90 degrees that includes model for the reorientation of the amphiphilic molecules was introduced. The model for uniform case was successfully verified by comparison with measured capillary rise in a coated uniform tube. The simulations indicated that nonuniform pore geometry amplifies the effect of CA(t) on the capillary rise dynamics. The stepwise meniscus propagation in the sinusoidal capillary tubes is driven by the time for the meniscus to reach the converging section of the tube. The retardation in capillary rise increases with tube waviness.
Cheriker, H. ; Stern Bauer, T. ; Oren, Y. ; Nir, S. ; Hayouka, Z. . Immobilized Random Peptide Mixtures Exhibit Broad Antimicrobial Activity With High Selectivity. CHEMICAL COMMUNICATIONS 2020, 56, 11022-11025.Abstract
In the current study, we evaluated the antimicrobial activity of randomly-sequenced peptide mixtures (RPMs) bearing hydrophobic and cationic residues thatwere immobilized on beads. We showed that these beads exhibit high and broad bactericidal activity against various pathogenic bacteria while possessing minimal hemolytic activity.
Tsukanov, K. ; Schwartz, N. . Relationship Between Wheat Root Properties And Its Electrical Signature Using The Spectral Induced Polarization Method. VADOSE ZONE JOURNAL 2020, 19.Abstract
Measuring root properties, the hidden half'' of the plant, is challenging due to their heterogeneous and dynamic nature. A promising method for noninvasive mapping of roots and their activity, spectral induced polarization (SIP), has been introduced. However, measurements of root properties together with their SIP responses are missing, limiting the interpretation of a root's SIP signature. In this study, we coupled SIP measurements of roots in hydroponic solution with measurements of root biomass, surface area, and diameter. Furthermore, we monitored the SIP response of roots poisoned by cyanide, which results in depolarization of the root's cell membrane potential. We found a linear correlation between root biomass and surface area, and the low-frequency electrical polarization. In addition, we demonstrate the relationship between root cell membrane potential and root polarization. Based on the results, we suggest that in comparison with the stem-based approach used by other researchers, the polarization in the contact-free method used in this study is related to the external surface area of the root and external architectural structures such as root diameter and root hair. Overall, a direct link between root properties and their electrical signature was established.
Kramer, I. ; Mau, Y. . Soil Degradation Risks Assessed By The Sote Model For Salinity And Sodicity. WATER RESOURCES RESEARCH 2020, 56.Abstract
Soil salinity and sodicity are serious environmental hazards, with the potential to limit agricultural production and cause destructive soil degradation. These concerns are especially high in dry areas, which often rely on saline and sodic irrigation water to support agriculture. To assess long-term soil degradation risk, we introduce the Salt of the Earth (SOTE) model, which describes the dynamics of soil water content, salinity, and sodicity, as driven by irrigation and rainfall. The SOTE model incorporates how changes in salinity and sodicity affect saturated soil hydraulic conductivity, K-s, on a soil-specific basis. The model was successfully validated against results from a multiyear lysimeter experiment involving different irrigation water qualities and precipitation. We evaluated the impact of shorter rainy seasons on the dynamics of soil degradation in a Mediterranean climate. Critical degradation risk, indicated by reductions in K-s greater than 20%, increased from 0% to 3% when the rainy season was shortened from 130 to 80 days. Alarmingly, when irreversible degradation is allowed for, overall risk increases to 68%. Assessing the effect of irrigation water on different soils textures, we found that while greater clay fractions are usually more susceptible to dispersion, accurate risk assessment hinges on soil water dynamics. SOTE is amenable to large-ensemble simulations of stochastic climatic conditions, for which trends in the statistics of salinization and soil degradation can be identified. As such, SOTE can be a useful land management tool, allowing planners to understand the risk of long-term soil degradation given irrigation practices, soil qualities, and climate conditions.
Shang, H. ; Ma, C. ; Li, C. ; White, J. C. ; Polubesova, T. ; Chefetz, B. ; Xing, B. . Copper Sulfide Nanoparticles Suppressgibberella Fujikuroiinfection In Rice (Oryza Satival.) By Multiple Mechanisms: Contact-Mortality, Nutritional Modulation And Phytohormone Regulation. ENVIRONMENTAL SCIENCE-NANO 2020, 7, 2632-2643.Abstract
The use of nanotechnology to suppress crop diseases is gaining increasing interest in agriculture. Copper sulfide nanoparticles (CuS NPs) were synthesized at 1 : 1 and 1 : 4 ratios of Cu and S and their respective antifungal efficacy was evaluated against the pathogenic activity ofGibberella fujikuroi(bakanae disease) in rice (Oryza sativaL.). In a 2 din vitrostudy, CuS (1 : 1) and CuS (1 : 4) NPs at 50 mg L(-1)decreasedG. fujikuroicolony-forming units (CFU) by 35.7 and 33%, respectively, compared to controls; commercial CuO NPs caused an 18.7% inhibition. In a greenhouse study, treating with both types of CuS NPs at 50 mg L(-1)at the seed stage significantly decreased disease incidence on rice by 35.1 and 45.9%, respectively. Comparatively, CuO NPs achieved only 8.1% disease reduction, and the commercial Cu-based pesticide Kocide 3000 had no impact on disease. Foliar-applied CuO NPs and CuS (1 : 1) NPs decreased disease incidence by 30.0 and 32.5%, respectively, which outperformed CuS (1 : 4) NPs (15%) and Kocide 3000 (12.5%). Notably, CuS (1 : 4) NPs also modulated the shoot salicylic acid (SA) and jasmonic acid (JA) production to enhance the plant defense mechanisms againstG. fujikuroiinfection. These findings provide useful information for improving the delivery efficiency of agrichemicalsvianano-enabled strategies while minimizing their environmental impact, and advance our understanding of the defense mechanisms triggered by the NPs presence in plants.
Brindt, N. ; Wallach, R. . The Moving-Boundary Approach For Modeling 2-D Gravity-Driven Stable And Unstable Flow In Partially Wettable Soils. WATER RESOURCES RESEARCH 2020, 56.Abstract
The moving-boundary approach, which has been successfully used to model stable and unstable 1-D flow in initially dry soils of various contact angles (Brindt & Wallach, 2017 ), was extended here for 2-D flow. The wetting front is the plume perimeter that is partly formed by the capillary driving force, the remaining part by the combined capillary and gravity driving forces. The moving-boundary approach overcomes the limitation of the Richards equation for describing gravity-driven unstable flow with nonmonotonic water-content distribution. According to this approach, the 2-D flow domain is divided into two subdomains with a sharp change in fluid saturation between them-the wetting front (moving boundary). The 2-D Richards equation was solved for the subdomain behind the wetting front for a given flux boundary condition at the soil surface, while the location of the other boundary, for which a no-flux condition is imposed, was part of the solution. The moving-boundary solution was used after verification to demonstrate the synergistic effect of contact angle and incoming flux on flow stability and its associated plume shapes. The contact angle that hinders spontaneous invasion of the dry pores decreases the water-entry capillary pressure, psi(we), while the flux-dependent dynamic water-entry value, psi(wed), is even lower, both inducing water accumulation behind the wetting front (saturation overshoot). This innovative physically based model for the 2-D unsaturated flow problem for an initially dry soil of zero and nonzero contact angle using the moving-boundary approach fulfills several criteria raised by researchers to adequately describe gravity-driven unstable flow.
Gorovits, R. ; Sobol, I. ; Akama, K. ; Chefetz, B. ; Czosnek, H. . Pharmaceuticals In Treated Wastewater Induce A Stress Response In Tomato Plants. SCIENTIFIC REPORTS 2020, 10.Abstract
Pharmaceuticals remain in treated wastewater used to irrigate agricultural crops. Their effect on terrestrial plants is practically unknown. Here we tested whether these compounds can be considered as plant stress inducers. Several features characterize the general stress response in plants: production of reactive oxygen species acting as stress-response signals, MAPKs signaling cascade inducing expression of defense genes, heat shock proteins preventing protein denaturation and degradation, and amino acids playing signaling roles and involved in osmoregulation. Tomato seedlings bathing in a cocktail of pharmaceuticals (Carbamazepine, Valporic acid, Phenytoin, Diazepam, Lamotrigine) or in Carbamazepine alone, at different concentrations and during different time-periods, were used to study the patterns of stress-related markers. The accumulation of the stress-related biomarkers in leaf and root tissues pointed to a cumulative stress response, mobilizing the cell protection machinery to avoid metabolic modifications and to restore homeostasis. The described approach is suitable for the investigation of stress response of different crop plants to various contaminants present in treated wastewater.
Zaarur, S. ; Stein, M. ; Adam, O. ; Mingram, J. ; Liu, J. ; Wu, J. ; Raveh-Rubin, S. ; Erel, Y. . Synoptic Stability And Anomalies In Ne China Inferred From Dust Provenance Of Sihailongwan Maar Sediments During The Past ∼80 Kyr. 2020, 239, 106279. Publisher's VersionAbstract
The paleo-synoptic conditions that prevailed during the past ∼80 kyr in northeastern China are inferred from the elemental and Sr–Nd isotopic compositions of Lake Sihailongwan Maar sediments. The detrital fraction in the lake sediments is dominated by aeolian input of felsic-rock origin, with little contribution of local volcanic material. Based on the isotopic Sr–Nd composition of the lake core-sediments, we postulate that the deserts of northern China are the main source of allochthonous particles to the lake throughout the past ∼80 kyr. Northwesterly winds associated with the East Asian winter monsoon and high latitude westerlies are the main carriers of dust from these deserts to the lake. The deserts of central China are an additional minor dust source. The episodic dust input from these deserts results from anomalous dry southwesterly winds. These could be related to either El Niño conditions, or to delays in the onset of the East Asian summer monsoon rains.
Xue, B. ; Wang, G. ; Xiao, J. ; Helman, D. ; Sun, W. ; Wang, J. ; Liu, T. . Global Convergence But Regional Disparity In The Hydrological Resilience Of Ecosystems And Watersheds To Drought. 2020, 591, 125589. Publisher's VersionAbstract
Drought is a major climate disturbance that can lower vegetation productivity and induce widespread vegetation die-off, which in turn can have a profound effect on the water cycle. Therefore, quantification of vegetation-specific responses to drought is essential to predict the impacts of climate change on ecosystem services. We used two previously-suggested quantitative metrics – dynamic deviation (d) and elasticity (e) based on the Budyko framework –to evaluate site- and watershed-level hydrological resilience of different plant functional types (PFTs) to drought. By using data from 41 FLUXNET sites and 2275 watersheds, we found a global convergence in hydrological resilience to drought across a variety of PFTs. Hydrological resilience of vegetation was related to drought intensity and water use efficiency. A greater hydrological resilience was found in PTFs in drier areas than in wetter areas, while this greater hydrological resilience was related to the coefficient of variation in precipitation. We also found that PFTs with a larger water use efficiency had higher hydrological resilience, particularly in drier regions, indicating adaptation strategies to changes in local climate conditions. Our findings can shed light on how ecosystems and watersheds dominated by different PFTs will respond to future climatic change and inform water resources management.
Helman, D. ; Zaitchik, B. F. ; Funk, C. . Climate Has Contrasting Direct And Indirect Effects On Armed Conflicts. Environmental Research Letters 2020, 15, 104017. Publisher's VersionAbstract
There is an active debate regarding the influence that climate has on the risk of armed conflict, which stems from challenges in assembling unbiased datasets, competing hypotheses on the mechanisms of climate influence, and the difficulty of disentangling direct and indirect climate effects. We use gridded historical non-state conflict records, satellite data, and land surface models in a structural equation modeling approach to uncover the direct and indirect effects of climate on violent conflicts in Africa and the Middle East (ME). We show that climate–conflict linkages in these regions are more complex than previously suggested, with multiple mechanisms at work. Warm temperatures and low rainfall direct effects on conflict risk were stronger than indirect effects through food and water supplies. Warming increases the risk of violence in Africa but unexpectedly decreases this risk in the ME. Furthermore, at the country level, warming decreases the risk of violence in most West African countries. Overall, we find a non-linear response of conflict to warming across countries that depends on the local temperature conditions. We further show that magnitude and sign of the effects largely depend on the scale of analysis and geographical context. These results imply that extreme caution should be exerted when attempting to explain or project local climate–conflict relationships based on a single, generalized theory.
Gabay, M. ; Raveh-Rubin, S. ; Peleg, M. ; Fredj, E. ; Tas, E. . Is Oxidation Of Atmospheric Mercury Controlled By Different Mechanisms In The Polluted Continental Boundary Layer Vs. Remote Marine Boundary Layer?. Environmental Research Letters 2020, 15, 064026. Publisher's VersionAbstract
Deposition of atmospheric mercury is of global concern, primarily due to health effects associated with efficient bioaccumulation of mercury in marine food webs. Although oxidation of gaseous elementary mercury (GEM), the major fraction of atmospheric mercury, is a critical stage in regulating atmospheric mercury deposition efficiency, this oxidation is currently not well-characterized, limiting modeling-based assessments of mercury in the environment. Based on a previous study, we hypothesized that the oxidation of GEM is predominantly controlled by multistep bromine- and chlorine-induced oxidation (MBCO) in the remote marine boundary layer (RMBL), and by photochemical smog oxidants, primarily ozone (O3) and hydroxyl radical (OH), in the polluted continental boundary layer (PCBL). To test this hypothesis, we used the following analyses: (i) application of a newly developed criterion to evaluate the gaseous oxidized mercury (GOM)–O3 association based on previous studies in the RMBL and PCBL; (ii) measurement-based box simulations of GEM oxidation in the RMBL and at a PCBL site; and (iii) measurement-based analysis of photochemical oxidation vs. other processes which potentially influence GOM. Our model simulations indicated that the MBCO mechanism can reproduce GOM levels in the RMBL, but not in the PCBL. Our data analysis suggested the important role of photochemical smog oxidants in GEM oxidation in the PCBL, potentially masked by the effect of relative humidity and entrainment of free tropospheric air.
Dayan, C. ; Fredj, E. ; Misztal, P. K. ; Gabay, M. ; Guenther, A. B. ; Tas, E. . Emission Of Biogenic Volatile Organic Compounds From Warm And Oligotrophic Seawater In The Eastern Mediterranean. Atmospheric Chemistry and Physics 2020, 20, 12741–12759. Publisher's Version
Dalal, A. ; Shenhar, I. ; Bourstein, R. ; Mayo, A. ; Grunwald, Y. ; Averbuch, N. ; Attia, Z. ; Wallach, R. ; Moshelion, M. . A Telemetric, Gravimetric Platform For Real-Time Physiological Phenotyping Of Plant&Ndash;Environment Interactions. 2020, e61280. Publisher's VersionAbstract
Food security for the growing global population is a major concern. The data provided by genomic tools far exceeds the supply of phenotypic data, creating a knowledge gap. To meet the challenge of improving crops to feed the growing global population, this gap must be bridged.Physiological traits are considered key functional traits in the context of responsiveness or sensitivity to environmental conditions. Many recently introduced high-throughput (HTP) phenotyping techniques are based on remote sensing or imaging and are capable of directly measuring morphological traits, but measure physiological parameters mainly indirectly. This paper describes a method for direct physiological phenotyping that has several advantages for the functional phenotyping of plant–environment interactions. It helps users overcome the many challenges encountered in the use of load-cell gravimetric systems and pot experiments. The suggested techniques will enable users to distinguish between soil weight, plant weight and soil water content, providing a method for the continuous and simultaneous measurement of dynamic soil, plant and atmosphere conditions, alongside the measurement of key physiological traits. This method allows researchers to closely mimic field stress scenarios while taking into consideration the environment’s effects on the plants’ physiology. This method also minimizes pot effects, which are one of the major problems in pre-field phenotyping. It includes a feed-back fertigation system that enables a truly randomized experimental design at a field-like plant density. This system detects the soil-water-content limiting threshold (θ) and allows for the translation of data into knowledge through the use of a real-time analytic tool and an online statistical resource. This method for the rapid and direct measurement of the physiological responses of multiple plants to a dynamic environment has great potential for use in screening for beneficial traits associated with responses to abiotic stress, in the context of pre-field breeding and crop improvement.