check
Copper sulfide nanoparticles suppressGibberella fujikuroiinfection in rice (Oryza sativaL.) by multiple mechanisms: contact-mortality, nutritional modulation and phytohormone regulation | Soil and Water Sciences

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
Herzl 229  Rehovot 7610001
ISRAEL

tel: 972-8-9489223
fax: 972-8-9475181
morze@savion.huji.ac.il

Copper sulfide nanoparticles suppressGibberella fujikuroiinfection in rice (Oryza sativaL.) by multiple mechanisms: contact-mortality, nutritional modulation and phytohormone regulation

Citation:

Shang, H. ; Ma, C. ; Li, C. ; White, J. C. ; Polubesova, T. ; Chefetz, B. ; Xing, B. . Copper Sulfide Nanoparticles Suppressgibberella Fujikuroiinfection In Rice (Oryza Satival.) By Multiple Mechanisms: Contact-Mortality, Nutritional Modulation And Phytohormone Regulation. ENVIRONMENTAL SCIENCE-NANO 2020, 7, 2632-2643.

Date Published:

SEP 1

Abstract:

The use of nanotechnology to suppress crop diseases is gaining increasing interest in agriculture. Copper sulfide nanoparticles (CuS NPs) were synthesized at 1 : 1 and 1 : 4 ratios of Cu and S and their respective antifungal efficacy was evaluated against the pathogenic activity ofGibberella fujikuroi(bakanae disease) in rice (Oryza sativaL.). In a 2 din vitrostudy, CuS (1 : 1) and CuS (1 : 4) NPs at 50 mg L(-1)decreasedG. fujikuroicolony-forming units (CFU) by 35.7 and 33%, respectively, compared to controls; commercial CuO NPs caused an 18.7% inhibition. In a greenhouse study, treating with both types of CuS NPs at 50 mg L(-1)at the seed stage significantly decreased disease incidence on rice by 35.1 and 45.9%, respectively. Comparatively, CuO NPs achieved only 8.1% disease reduction, and the commercial Cu-based pesticide Kocide 3000 had no impact on disease. Foliar-applied CuO NPs and CuS (1 : 1) NPs decreased disease incidence by 30.0 and 32.5%, respectively, which outperformed CuS (1 : 4) NPs (15%) and Kocide 3000 (12.5%). Notably, CuS (1 : 4) NPs also modulated the shoot salicylic acid (SA) and jasmonic acid (JA) production to enhance the plant defense mechanisms againstG. fujikuroiinfection. These findings provide useful information for improving the delivery efficiency of agrichemicalsvianano-enabled strategies while minimizing their environmental impact, and advance our understanding of the defense mechanisms triggered by the NPs presence in plants.