Publications by year

<embed>

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 
ISRAEL

tel: 972-8-9489340
fax: 972-8-9475181
neomim@savion.huji.ac.il

Publications

2018
Brindt, N. ; Wallach, R. Modeling gravity-driven fingering by using the moving boundary approach. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 4729.
Leuther, F. ; Weller, U. ; Wallach, R. ; Vogel, H. - J. Quantitative analysis of wetting front instabilities in soil caused by treated waste water irrigation. Geoderma 2018, 319, 132 - 141. Publisher's VersionAbstract
Irrigation with treated waste water (TWW) is a common practice in agriculture, mainly in arid and semiarid areas as it provides a sustainable water resource available at all-season in general and at freshwater shortage in particular. However, TWW still contains abundant organic material which is known to decrease soil wettability, which in turn may promote flow instabilities that lead to the formation of preferential flow paths. We investigate the impact of long-term TWW irrigation on water wettability and infiltration into undisturbed soil cores from two commercially used orchards in Israel. Changes of water content during infiltration were quantitatively analysed by X-ray radiography. One orchard (sandy clay loam) had been irrigated with TWW for more than thirty years. In the other orchard (loamy sand) irrigation had been changed from freshwater to TWW in 2008 and switched back in some experimental plots to freshwater in 2012. Undisturbed soil cores were taken at the end of the dry and the rainy season to investigate the seasonal effect on water repellency and on infiltration dynamics in the laboratory. The irrigation experiments were done on field moist samples. A test series with different initial water contents was run to detect the influence on water movement at different wettabilities. In this study we show that the infiltration front stability is dependent on the history of waste water irrigation at the respective site and on the initial water content.
Galkin, E. ; Dalal, A. ; Evenko, A. ; Fridman, E. ; Kan, I. ; Wallach, R. ; Moshelion, M. Risk-management strategies and transpiration rates of wild barley in uncertain environments. Physiologia Plantarum 2018, 164, 412 - 428. Publisher's VersionAbstract
Regulation of the rate of transpiration is an important part of plants' adaptation to uncertain environments. Stomatal closure is the most common response to severe drought. By closing their stomata, plants reduce transpiration to better their odds of survival under dry conditions. Under mild to moderate drought conditions, there are several possible transpiration patterns that balance the risk of lost productivity with the risk of water loss. Here, we hypothesize that plant ecotypes that have evolved in environments characterized by unstable patterns of precipitation will display a wider range of patterns of transpiration regulation along with other quantitative physiological traits (QPTs), compared to ecotypes from less variable environments. We examined five accessions of wild barley (Hordeum vulgare ssp. spontaneum) from different locations in Israel (the B1K collection) with annual rainfall levels ranging from 100 to 900?mm, along with one domesticated line (cv. Morex). We measured several QPTs and morphological traits of these accessions under well-irrigated conditions, under drought stress and during recovery from drought. Our results revealed a correlation between precipitation-certainty conditions and QPT plasticity. Specifically, accessions from stable environments (very wet or very dry locations) were found to take greater risks in their water-balance regulation than accessions from areas in which rainfall is less predictable. Notably, less risk-taking genotypes recovered more quickly than more risk-taking ones once irrigation was resumed. We discuss the relationships between environment, polymorphism, physiological plasticity and fitness, and suggest a general risk-taking model in which transpiration-rate plasticity is negatively correlated with population polymorphism.
Li, Q. ; Gabay, M. ; Rubin, Y. ; Fredj, E. ; Tas, E. Measurement-based investigation of ozone deposition to vegetation under the effects of coastal and photochemical air pollution in the Eastern Mediterranean. Science of The Total Environment 2018, 645, 1579 - 1597. Publisher's VersionAbstract
Dry deposition of ozone (O3) to vegetation is an important pathway for its removal from the troposphere, and it can lead to adverse effects in plants and changes in climate. However, our mechanistic understanding of O3 dry deposition is insufficient to adequately account for it in global and regional models, primarily because this process is highly complicated by feedback mechanisms and sensitivity to specific characteristics of vegetative environment and atmospheric dynamics and composition. We hypothesized that measuring dry deposition of O3 to vegetation near the Eastern Mediterranean (EM) coast, where large variations in meteorological conditions and photochemical air pollution frequently occur, would enable identifying the mechanisms controlling O3 deposition to vegetation. Moreover, we have only limited knowledge of O3 deposition to vegetation occurring near a coastline, under air pollution, or in the EM. This study investigated O3 deposition to mixed Mediterranean vegetation between the summers of 2015 and 2017, 3.6 km away from the EM coast, using the eddy covariance technique to quantify vertical flux of O3 and its partitioning to stomatal and non-stomatal flux, concurrent with nitrogen oxide (NOx), sulfur dioxide and carbon monoxide. Surprisingly, nighttime O3-deposition velocity (Vd) was smaller than daytime Vd by only ~20–37% on average for all measurement periods, primarily related to moderate nighttime atmospheric stability due to proximity to the seashore. We provide evidence for the role of sea-salt aerosols in enhancing O3 deposition via surface-wetness buildup at low relative humidity near the coast, and for daytime enhancement of O3 deposition by the combined effects of biogenic volatile organic compound emission and surface-wetness buildup. We further show that NOx emitted from elevated emission sources can reduce O3 deposition, and even lead to a positive O3 flux, demonstrating the importance of adequately taking into account the impact of air pollution on O3 deposition to vegetation.
Tas, E. ; Shechner, M. Ozone Formation Induced by Reactive Bromine and Iodine Species in a polluted marine environment. AGU Fall Meeting Abstracts 2018.
Rohatyn, S. ; Rotenberg, E. ; Ramati, E. ; Tatarinov, F. ; Tas, E. ; Yakir, D. Differential Impacts of Land Use and Precipitation on “Ecosystem Water Yield”. Water Resources Research 2018, 54, 5457 - 5470. Publisher's VersionAbstract
Abstract Ecosystem evapotranspiration (ET) can approach annual precipitation (P) often leaving a residual [P-ET], referred to as an ecosystem water yield (WYe). Using a mobile lab, we estimate ET and WYe, in paired forest and nonforest (shrub or grassland) sites along the precipitation gradient (285?755 mm a?1) in Israel. WYe was 69 mm in the dry sites and was further reduced by ?51 mm by forestation. Both WYe and the impact of forestation increased in the wetter sites, with forestation reducing WYe by >200 mm, equivalent to ?30% of the local P. This was associated with increase in ET by a factor of 2.2 and 1.8 in the forest and nonforest sites, respectively, along the rainfall gradient. Losses in WYe due to forestation approached a maximum of ?200 mm above P ? 500 mm, but the forest WYe could vary between ?300 mm at P?=?900 mm and ?100 mm at P?=?500 mm (with equivalent change in WYe between 500 and 300 mm in the nonforest sites), reflecting the increasing ?hydrological cost? associated with vegetation ET and the expected climate change in these regions. The results quantify the interactions of land use and climate on ecosystem ET, indicating that in dry climates, afforestation impact on WYe varies significantly across small spatial scales and can reduce WYe with significant impacts on local hydrology. Such impact may be diminished by management (e.g., plant species, thinning, and grazing) but should also consider the trade-offs with other ecosystem services (e.g., carbon sequestration, soil protection, and surface cooling).
Dayan, C. ; Fredj, E. ; Misztal, P. ; Goldstein, A. ; Tas, E. BVOC from natural vegetation at the eastern Mediterranean and its interaction with local and regional photochemistry. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 4535.
Li, Q. ; Gabay, M. ; Fredj, E. ; Tas, E. Ozone deposition to natural vegetation in the Easterm Mediterranean. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 4734.
Shechner, M. ; Tas, E. Correction to Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment. Environmental Science & Technology 2018, 52, 1679 - 1679. Publisher's Version
Goldstein, M. ; Malchi, T. ; Shenker, M. ; Chefetz, B. Pharmacokinetics in Plants: Carbamazepine and Its Interactions with Lamotrigine. Environmental Science & Technology 2018, 52, 6957 - 6964. Publisher's VersionAbstract
Carbamazepine and lamotrigine prescribed antiepileptic drugs are highly persistent in the environment and were detected in crops irrigated with reclaimed wastewater. This study reports pharmacokinetics of the two drugs and their metabolites in cucumber plants under hydroponic culture, testing their uptake, translocation, and transformation over 96 h in single and bisolute systems at varying pH. Ruling out root adsorption and transformations in the nutrient solution, we demonstrate that carbamazepine root uptake is largely affected by the concentration gradient across the membrane. Unlike carbamazepine, lamotrigine is adsorbed to the root and undergoes ion trapping in root cells thus its translocation to the shoots is limited. On the basis of that, carbamazepine uptake was not affected by the presence of lamotrigine, while lamotrigine uptake was enhanced in the presence of carbamazepine. Transformation of carbamazepine in the roots was slightly reduced in the presence of lamotrigine. Carbamazepine metabolism was far more pronounced in the shoots than in the roots, indicating that most of the metabolism occurs in the leaves, probably due to higher concentration and longer residence time. This study indicates that the uptake of small nonionic pharmaceuticals is passive and governed by diffusion across the root membrane.Carbamazepine and lamotrigine prescribed antiepileptic drugs are highly persistent in the environment and were detected in crops irrigated with reclaimed wastewater. This study reports pharmacokinetics of the two drugs and their metabolites in cucumber plants under hydroponic culture, testing their uptake, translocation, and transformation over 96 h in single and bisolute systems at varying pH. Ruling out root adsorption and transformations in the nutrient solution, we demonstrate that carbamazepine root uptake is largely affected by the concentration gradient across the membrane. Unlike carbamazepine, lamotrigine is adsorbed to the root and undergoes ion trapping in root cells thus its translocation to the shoots is limited. On the basis of that, carbamazepine uptake was not affected by the presence of lamotrigine, while lamotrigine uptake was enhanced in the presence of carbamazepine. Transformation of carbamazepine in the roots was slightly reduced in the presence of lamotrigine. Carbamazepine metabolism was far more pronounced in the shoots than in the roots, indicating that most of the metabolism occurs in the leaves, probably due to higher concentration and longer residence time. This study indicates that the uptake of small nonionic pharmaceuticals is passive and governed by diffusion across the root membrane.
Seth, A. ; Gothelf, R. ; Shenker, M. The K to (Ca+Mg) ratio effect on potassium availability for plants - splitting soil- from plant-related interactions. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 9425.
Rotbart, N. ; Guetta, Y. ; Oren, A. ; Laor, Y. ; Raviv, M. ; Medina, S. ; Levy, G. ; Yermiyahu, U. ; Shenker, M. ; Bar-Tal, A. Organic management effects on the dynamics of soil organic carbon and nitrogen pools. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 12033.
Shenker, M. ; Seth, A. Potassium availability in soils and the use of the Q/I approach - moving from theory to nation-wide realization. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 9716.
Zimerman-Lax, N. ; Tamir-Ariel, D. ; Shenker, M. ; Burdman, S. Decreased potassium fertilization is associated with increased pathogen growth and disease severity caused by Acidovorax citrulli in melon foliage. Journal of General Plant Pathology 2018, 84, 27 - 34. Publisher's VersionAbstract
The gram-negative bacterium Acidovorax citrulli causes bacterial fruit blotch (BFB) disease of cucurbits, which represents a serious threat to melon and watermelon production worldwide. To date, there are no efficient means to manage the disease, and reliable resistance sources for cucurbit germplasm are lacking. Mineral nutrition markedly affects plant diseases. Recently, we reported that disease severity on melon foliage and A. citrulli growth in the leaf tissue were significantly influenced by the form of nitrogen supply. In the present study, we investigated the influence of potassium nutrition on BFB severity and A. citrulli establishment in the foliage of melon plants. Fertilization with relatively low concentrations of potassium increased these variables compared with higher potassium concentrations. Since establishment of A. citrulli during the growing season is assumed to increase the incidence of fruit infection, the fact that mineral nutrition influences BFB incidence in the plant foliage is of particular importance.
Golan, G. ; Hendel, E. ; Méndez Espitia, G. E. ; Schwartz, N. ; Peleg, Z. Activation of seminal root primordia during wheat domestication reveals underlying mechanisms of plant resilience. Plant Cell Environ 2018, 41, 755-766.Abstract
Seminal roots constitute the initial wheat root system and provide the main route for water absorption during early stages of development. Seminal root number (SRN) varies among species. However, the mechanisms through which SRN is controlled and in turn contribute to environmental adaptation are poorly understood. Here, we show that SRN increased upon wheat domestication from 3 to 5 due to the activation of 2 root primordia that are suppressed in wild wheat, a trait controlled by loci expressed in the germinating embryo. Suppression of root primordia did not limit water uptake, indicating that 3 seminal roots is adequate to maintain growth during seedling development. The persistence of roots at their primordial state promoted seedling recovery from water stress through reactivation of suppressed primordia upon rehydration. Our findings suggest that under well-watered conditions, SRN is not a limiting factor, and excessive number of roots may be costly and maladaptive. Following water stress, lack of substantial root system suppresses growth and rapid recovery of the root system is essential for seedling recovery. This study underscores SRN as key adaptive trait that was reshaped upon domestication. The maintenance of roots at their primordial state during seedling development may be regarded as seedling protective mechanism against water stress.
Berezniak, A. ; Ben-Gal, A. ; Mishael, Y. ; Nachshon, U. Manipulation of Soil Texture to Remove Salts from a Drip-Irrigated Root Zone. Vadose Zone Journal 2018, 17. Publisher's VersionAbstract
Drip irrigation is a useful method for the application of low-quality water because it does not wet the foliage and limits the spread of contaminants. Nevertheless, when using water containing high levels of dissolved salts, drip irrigation may be insufficient for leaching and can lead to soil salinization. A new conceptual model was tested experimentally and numerically to examine if manipulation of the distribution of soils with different textures could promote the removal of salts from the root zone and increase leaching efficiency. The manipulated root zone consisted of a volume of coarse soil, located under a drip irrigation emitter, surrounded by finer texture soil. We hypothesized that the differences in hydraulic properties between the two soils and the capillary barrier developed at their interface would generate a one-directional flow path of the salty water from the location of irrigation to the fine soil. This would enforce salt accumulation beyond the root zone. The concept was tested in a series of lysimeter and Hele–Shaw chamber experiments, together with a two-dimensional flow model created in HYDRUS-2D. Results showed preferential salt accumulation beyond the coarse segment of the manipulated soil, providing a volume of leached soil sufficient to support a healthy root system. Under conditions of homogenous soil texture, a notable buildup of salinity was observed in the central root zone, whereas under the manipulated texture conditions, such salt buildup was not observed.
Shabtai, I. A. ; Mishael, Y. G. Polycyclodextrin–Clay Composites: Regenerable Dual-Site Sorbents for Bisphenol A Removal from Treated Wastewater. ACS Applied Materials & Interfaces 2018, 10, 27088 - 27097. Publisher's VersionAbstract
The greatest challenge of wastewater treatment is the removal of trace concentrations of persistent micropollutants in the presence of the high concentration of effluent organic matter (EfOM). Micropollutant removal by sorbents is a common practice, but sorbent employment is often limited because of fouling induced by EfOM and challenging sorbent regeneration. We directly addressed these two issues by designing regenerable dual-site composite sorbents based on polymerized β-cyclodextrin, modified with a cationic group (pCD+) and adsorbed to montmorillonite (pCD+-MMT). This dual-site composite was tailored to simultaneously target an emerging micropollutant, bisphenol A (BPA), through inclusion in β-cyclodextrin cavities and target anionic EfOM compounds, through electrostatic interactions. The removal of BPA from treated wastewater by the composite was not compromised despite the high removal of EfOM. The composites outperformed many recently reported sorbents. Differences in composite performance was discussed in terms of their structures, as characterized with TGA, XRD, BET and SEM. The simultaneous filtration of BPA and EfOM from wastewater by pCD+-MMT columns was demonstrated. Furthermore, successful in-column regeneration was obtained by selectively eluting EfOM and BPA, with brine and alkaline solutions, respectively. Finally, the composites removed trace concentrations of numerous high priority micropollutants from treated wastewater more efficiently than commercial activated carbon. This study highlights the potential to design novel dual-site composites as selective and regenerable sorbents for advanced wastewater treatment.The greatest challenge of wastewater treatment is the removal of trace concentrations of persistent micropollutants in the presence of the high concentration of effluent organic matter (EfOM). Micropollutant removal by sorbents is a common practice, but sorbent employment is often limited because of fouling induced by EfOM and challenging sorbent regeneration. We directly addressed these two issues by designing regenerable dual-site composite sorbents based on polymerized β-cyclodextrin, modified with a cationic group (pCD+) and adsorbed to montmorillonite (pCD+-MMT). This dual-site composite was tailored to simultaneously target an emerging micropollutant, bisphenol A (BPA), through inclusion in β-cyclodextrin cavities and target anionic EfOM compounds, through electrostatic interactions. The removal of BPA from treated wastewater by the composite was not compromised despite the high removal of EfOM. The composites outperformed many recently reported sorbents. Differences in composite performance was discussed in terms of their structures, as characterized with TGA, XRD, BET and SEM. The simultaneous filtration of BPA and EfOM from wastewater by pCD+-MMT columns was demonstrated. Furthermore, successful in-column regeneration was obtained by selectively eluting EfOM and BPA, with brine and alkaline solutions, respectively. Finally, the composites removed trace concentrations of numerous high priority micropollutants from treated wastewater more efficiently than commercial activated carbon. This study highlights the potential to design novel dual-site composites as selective and regenerable sorbents for advanced wastewater treatment.
Gardi, I. ; Mishael, Y. G. Designing a regenerable stimuli-responsive grafted polymer-clay sorbent for filtration of water pollutants. Science and Technology of Advanced Materials 2018, 19, 588 - 598. Publisher's VersionAbstract
ABSTRACTA novel, stimuli-responsive composite, based on poly(4-vinylpyridine) (PVP) brushes, end-grafted to montmorillonite clay (GPC), was designed as a regenerable sorbent for efficient removal of pollutants from water. We characterized the novel composite sorbent and its response to pH, employing Fourier transform infrared, X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetry analysis and zeta potential measurements. In comparison with conventional, electrostatically adsorbed PVP composites (APC), the GPC presented superior characteristics: higher polymer loading without polymer release, higher zeta potential and lower pH/charge dependency. These superior characteristics explained the significantly higher removal of organic and inorganic anionic pollutants by this composite, in comparison with the removal by APC and by many reported sorbents. For example, the filtration (20 pore volumes) of selenate by GPC, APC and a commercial resin column was complete (100%), negligible (0%) and reached 90% removal, respectively. At low?moderate pH, the grafted polymer undergoes protonation, promoting pollutant adsorption, whereas at high pH, the polymer deprotonates, promoting pollutant desorption. Indeed, ?in-column? regeneration of the GPC sorbents was achieved by increasing pH, and upon a second filtration cycle, no reduction in filter capacity was observed. These findings suggest the possible applicability of this stimuli-responsive sorbent for water treatment.
Mau, Y. ; Zelnik, Y. ; Meron, E. Drought resilience of dryland ecosystems under spatial periodic forcing. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 9249.
Kramer, I. ; Mau, Y. Salinity and Sodicity Dynamics in Soils: A Simplified Model. AGU Fall Meeting Abstracts 2018.