Publications by Year

<embed>

Publications by Authors

225deacc779a0d05aa0cd6165edfbbb9

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 
ISRAEL

tel: 972-8-9489340
fax: 972-8-9475181
neomim@savion.huji.ac.il

Publications

2018
Goldstein, M. ; Malchi, T. ; Shenker, M. ; Chefetz, B. Pharmacokinetics in Plants: Carbamazepine and Its Interactions with Lamotrigine. Environmental Science & Technology 2018, 52, 6957 - 6964. Publisher's VersionAbstract
Carbamazepine and lamotrigine prescribed antiepileptic drugs are highly persistent in the environment and were detected in crops irrigated with reclaimed wastewater. This study reports pharmacokinetics of the two drugs and their metabolites in cucumber plants under hydroponic culture, testing their uptake, translocation, and transformation over 96 h in single and bisolute systems at varying pH. Ruling out root adsorption and transformations in the nutrient solution, we demonstrate that carbamazepine root uptake is largely affected by the concentration gradient across the membrane. Unlike carbamazepine, lamotrigine is adsorbed to the root and undergoes ion trapping in root cells thus its translocation to the shoots is limited. On the basis of that, carbamazepine uptake was not affected by the presence of lamotrigine, while lamotrigine uptake was enhanced in the presence of carbamazepine. Transformation of carbamazepine in the roots was slightly reduced in the presence of lamotrigine. Carbamazepine metabolism was far more pronounced in the shoots than in the roots, indicating that most of the metabolism occurs in the leaves, probably due to higher concentration and longer residence time. This study indicates that the uptake of small nonionic pharmaceuticals is passive and governed by diffusion across the root membrane.Carbamazepine and lamotrigine prescribed antiepileptic drugs are highly persistent in the environment and were detected in crops irrigated with reclaimed wastewater. This study reports pharmacokinetics of the two drugs and their metabolites in cucumber plants under hydroponic culture, testing their uptake, translocation, and transformation over 96 h in single and bisolute systems at varying pH. Ruling out root adsorption and transformations in the nutrient solution, we demonstrate that carbamazepine root uptake is largely affected by the concentration gradient across the membrane. Unlike carbamazepine, lamotrigine is adsorbed to the root and undergoes ion trapping in root cells thus its translocation to the shoots is limited. On the basis of that, carbamazepine uptake was not affected by the presence of lamotrigine, while lamotrigine uptake was enhanced in the presence of carbamazepine. Transformation of carbamazepine in the roots was slightly reduced in the presence of lamotrigine. Carbamazepine metabolism was far more pronounced in the shoots than in the roots, indicating that most of the metabolism occurs in the leaves, probably due to higher concentration and longer residence time. This study indicates that the uptake of small nonionic pharmaceuticals is passive and governed by diffusion across the root membrane.
Seth, A. ; Gothelf, R. ; Shenker, M. The K to (Ca+Mg) ratio effect on potassium availability for plants - splitting soil- from plant-related interactions. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 9425.
Rotbart, N. ; Guetta, Y. ; Oren, A. ; Laor, Y. ; Raviv, M. ; Medina, S. ; Levy, G. ; Yermiyahu, U. ; Shenker, M. ; Bar-Tal, A. Organic management effects on the dynamics of soil organic carbon and nitrogen pools. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 12033.
Shenker, M. ; Seth, A. Potassium availability in soils and the use of the Q/I approach - moving from theory to nation-wide realization. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 9716.
Zimerman-Lax, N. ; Tamir-Ariel, D. ; Shenker, M. ; Burdman, S. Decreased potassium fertilization is associated with increased pathogen growth and disease severity caused by Acidovorax citrulli in melon foliage. Journal of General Plant Pathology 2018, 84, 27 - 34. Publisher's VersionAbstract
The gram-negative bacterium Acidovorax citrulli causes bacterial fruit blotch (BFB) disease of cucurbits, which represents a serious threat to melon and watermelon production worldwide. To date, there are no efficient means to manage the disease, and reliable resistance sources for cucurbit germplasm are lacking. Mineral nutrition markedly affects plant diseases. Recently, we reported that disease severity on melon foliage and A. citrulli growth in the leaf tissue were significantly influenced by the form of nitrogen supply. In the present study, we investigated the influence of potassium nutrition on BFB severity and A. citrulli establishment in the foliage of melon plants. Fertilization with relatively low concentrations of potassium increased these variables compared with higher potassium concentrations. Since establishment of A. citrulli during the growing season is assumed to increase the incidence of fruit infection, the fact that mineral nutrition influences BFB incidence in the plant foliage is of particular importance.
2017
Yalin, D. ; Schwartz, A. ; Assouline, S. ; Narkis, K. ; Eshel, A. ; Levin, A. G. ; Lowengart-Aycicegi, A. ; Tarchitzky, J. ; Shenker, M. Insights from “The Hidden Half”: The impact of root-zone oxygen and redox dynamics on the response of avocado to long-term irrigation with treated wastewater in clayey soil. Israel Journal of Plant Sciences 2017, 64. Publisher's Version
Litaor, M. I. ; Katz, L. ; Shenker, M. The influence of compost and zeolite co-addition on the nutrients status and plant growth in intensively cultivated Mediterranean soils. Soil Use and Management 2017, 33, 72-80. Publisher's VersionAbstract
Abstract The main objective of the study was to test the benefits of compost and zeolite co-addition on the fertility of organic-rich Mediterranean soils. Previous pot study in greenhouse found that zeolites mixed with compost significantly improved potassium availability as well as exchangeable potassium capacity in the soils. To further test this finding, a field experiment was conducted using potato – Solanum tuberosum L., desiree cultivar in peat soils of the Hula Valley, Israel. Adhering to the protocol of the greenhouse experiments, the treatments included 5% compost addition with no zeolites, 2% zeolite addition without compost, co-addition of 5% compost mixed with 2% zeolites and control. We found that compost addition increased significantly the potatoes yield and the number of large tubers; however, the zeolite addition had no impact on yield. Co-addition of compost and zeolites did not improve total crop yield or number of large tubers compared with compost addition only. The results are consistent with nutrients availability (N, P, K) across the treatments. In a commercialized field using the experiment conditions, the 2% zeolite addition would amount to 18 ton of zeolites per hectare. Hence, we conclude that soil amendment with the tested zeolite might be beneficial to improve soil retention for cationic nutrients (e.g. K+) under high leaching systems such as plant culture in pots, but in the field with high loads of compost, its effect is minor.
2016
Edelstein, M. ; Berstein, D. ; Shenker, M. ; Azaizeh, H. ; Ben-Hur, M. Effects of selenium on growth parameters of tomato and basil under fertigation management. HortScience 2016, 51, 1050 - 1056. Publisher's Version
Zimerman-Lax, N. ; Shenker, M. ; Tamir-Ariel, D. ; Perl-Treves, R. ; Burdman, S. Effects of nitrogen nutrition on disease development caused by Acidovorax citrulli on melon foliage. 2016, 145, 125 - 137. Publisher's VersionAbstract
Bacterial fruit blotch (BFB) of cucurbits, caused by the seed-borne bacterium Acidovorax citrulli, is a destructive disease that threatens the melon and watermelon industries worldwide. The available means to manage the disease are very limited and there are no reliable sources of BFB resistance. Mineral nutrition has marked effects on plant diseases. To the best of our knowledge, no studies reporting effects of mineral nutrition on BFB severity have been reported to date. In the present study we assessed the influence of nitrogen nutrition on BFB severity and A. citrulli establishment in the foliage of melon plants under greenhouse conditions. Our results show that nitrogen fertilization, based on nitrate only, led to reduced disease severity and bacterial numbers in melon leaves, as compared with two combinations of nitrate and ammonium. No consistent effect of nitrogen nutrition on expression of several plant defense-associated transcripts was found, except for hydroperoxide lyase (HPL), which upon inoculation was repressed to a greater extent under the “nitrate-only” nitrogen regime compared with combined nitrate and ammonium. Reducing BFB severity and A. citrulli establishment in the plant foliage are of particular importance since establishment of the pathogen during the growing season is assumed to increase the incidence of fruit infection, leading to serious yield losses. Further research is needed to elucidate the mechanisms by which nitrogen nutrition influences BFB development, and to assess the effects of nitrogen as well as other minerals on the disease under field conditions.