Publications by Year

<embed>

Publications by Authors

225deacc779a0d05aa0cd6165edfbbb9

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 
ISRAEL

tel: 972-8-9489340
fax: 972-8-9475181
neomim@savion.huji.ac.il

Publications

2019
Brienza, M. ; Nir, S. ; Plantard, G. ; Goetz, V. ; Chiron, S. Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment. Environmental Science and Pollution Research 2019, 26, 18971-18978. Publisher's VersionAbstract
A tertiary treatment of effluent from a biological domestic wastewater treatment plant was tested by combining filtration and solar photocatalysis. Adsorption was carried out by a sequence of two column filters, the first one filled with granular activated carbon (GAC) and the second one with granulated nano-composite of micelle-montmorillonite mixed with sand (20:100, w/w). The applied solar advanced oxidation process was homogeneous photo-Fenton photocatalysis using peroxymonosulfate (PMS) as oxidant agent. This combination of simple, robust, and low-cost technologies aimed to ensure water disinfection and emerging contaminants (ECs, mainly pharmaceuticals) removal. The filtration step showed good performances in removing dissolved organic matter and practically removing all bacteria such as Escherichia coli and Enterococcus faecalis from the secondary treated water. Solar advanced oxidation processes were efficient in elimination of trace levels of ECs. The final effluent presented an improved sanitary level with acceptable chemical and biological characteristics for irrigation. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
2018
Lozano-Morales, V. ; Gardi, I. ; Nir, S. ; Undabeytia, T. Removal of pharmaceuticals from water by clay-cationic starch sorbents. Journal of Cleaner Production 2018, 190, 703-711. Publisher's VersionAbstract
Significant concerns have been raised up due to the presence of organic micropollutants in surface waters. The ability of two polymer-clay sorbents based on a functionalized cationic starch was examined for the removal of three pharmaceuticals: atenolol, sulfamethoxazole and diclofenac sodium. In batch experiments, the complex which exhibited a planar conformation of the polymer on the clay surface and higher cationic charge density showed higher sorption of diclofenac and sulfamethoxazole over those of the composite with a loops and tails configuration, but similar with atenolol. The introduction of functional moieties on the polymers that are capable to create a network of hydrogen-bonds with the pollutants promoted their removal as revealed by thermal and infrared techniques: diclofenac molecules formed an ion pair including hydrogen bonds through their secondary amine groups; sulfamethoxazole sorbed by strong electrostatic interactions followed by proton transfer involving its sulphon-nitrogen group and the hydroxyl moieties of the composite. Filtration experiments showed a better performance of the columns made of the composite with higher cationic charge density on the removal of diclofenac and sulfamethoxazole over that of granular activated carbon. The filtration processes were successfully modeled by using an adsorption-convection model which enabled predictions under different operational conditions used in drinking water plants. Experimental removal of diclofenac by filtration within the range found in environmental concentrations was in good agreement with the predicted amounts. © 2018
Shuali, U. ; Nir, S. Role of micelle-clay complexes and quaternary amine cations in removal of bacteria from water: Adsorption, biostatic, and biocidal effects. Clays and Clay Minerals 2018, 66, 485-492. Publisher's VersionAbstract
{The present report is a review of uses of quaternary ammonium cations (QACs) as free monomers or immobilized in micelle-clay complexes in bacteria removal from water. The removal of bacteria from water by filtration through a bed of a granulated QAC-clay micelle was improved by minute concentrations of QAC that were released from the complex during filtration, which exerted biostatic or biocidal effects on the bacteria that emerged from the filter. The relationships between antibacterial activity (minimum inhibition concentration, MIC; minimum lethal concentration, MLC) and structural parameters of the QACs (head group size and alkyl chain length) are discussed. The antibacterial activity of QACs in aqueous phases is mainly due to the free monomeric species. Bacterial inactivation is enhanced by QACs with longer alkyl chains. In most recorded cases, however, minimum MIC and MLC values occurred at n =14 16 and mostly at n = 16, where n is the number of C atoms in the alkyl chain. This outcome is explained by the combination of two antagonistic effects: (i) An increase in alkyl chain length (i.e., QAC hydrophobicity) enhances QAC binding, penetration, and destabilization of bacterial membranes; and (ii) an increase in alkyl chain length lowers the critical micelle concentration (CMC) of QACs and, thus, reduces QAC monomer concentrations, which more efficiently inactivate bacteria than the micelles. The octadecyltrimethylammonium (ODTMA
2017
Diizgüneç, N. ; Nir, S. Liposomes as tools for elucidating the mechanisms of membrane fusion; Liposomes as Tools in Basic Research and Industry (1994); 2017; pp. 103-136. Publisher's VersionAbstract
Membrane fusion is a central biophysical and biochemical reaction in numerous biological processes. Exocytosis involves the fusion of the secretory vesicle membrane with the plasma membrane in diverse biological systems, including neurotransmitter release at the neuromuscular junction, histamine release from mast cells, chromaffin granule extrusion from adrenal medullary cells, trichocyst discharge in Paramecium, endotoxin-induced degranulation in Limulus amebocytes, and the cortical reaction in sea urchin eggs.1-4 The first stage in the formation of an endocytotic vesicle is the fusion of apposed regions of the invaginated plasma membrane. Later in the endocytotic pathway, endosomes and phagosomes fuse with lysosomes. Receptor recycling back to the plasma membrane proceeds through pinching off of receptor-containing vesicles from the compartment of uncoupling of receptor and ligand. Transport of newly synthesized membrane or secretory proteins from the endoplasmic reticulum to the Golgi apparatus, within the cis, medial and trans regions of the Golgi is thought to be mediated by transport vesicles that bud off from one compartment and fuse with another.5-7. © 1995 by Taylor & Francis.
Sukenik, A. ; Viner-Mozzin, Y. ; Tavassi, M. ; Nir, S. Removal of cyanobacteria and cyanotoxins from lake water by composites of bentonite with micelles of the cation octadecyltrimethyl ammonium (ODTMA). Water Research 2017, 120, 165-173. Publisher's VersionAbstract
Cyanobacteria and their toxins present potential hazard to consumers of water from lakes, reservoirs and rivers, thus their removal via water treatment is essential. The capacity of nano-composites of Octadecyltrimethyl-ammonium (ODTMA) complexed with clay to remove cyanobacterial and their toxins from laboratory cultures and from lake water, was evaluated. Column filters packed with micelles of ODTMA complexed with bentonite and granulated were shown to significantly reduce the number of cyanobacteria cells or filaments and their corresponding toxins from laboratory cultures. Fluorescence measurements demonstrated that cyanobacteria cells lost their metabolic activity (photosynthesis) upon exposure to the micelle (ODTMA)–bentonite complex, or ODTMA monomers. The complex efficiently removed cyanobacteria toxins with an exceptional high removal rate of microcystins. The effectiveness of the complex in elimination of cyanobacteria was further demonstrated with lake water containing cyanobacteria and other phytoplankton species. These results and model calculations suggest that filters packed with granulated composites can secure the safety of drinking water in case of a temporary bloom event of toxic cyanobacteria. © 2017 Elsevier Ltd
Kalfa, A. ; Rakovitsky, N. ; Tavassi, M. ; Ryskin, M. ; Ben-Ari, J. ; Etkin, H. ; Shuali, U. ; Nir, S. Removal of Escherichia coli and total bacteria from water by granulated micelle-clay complexes: Filter regeneration and modeling of filtration kinetics. Applied Clay Science 2017, 147, 63-68. Publisher's VersionAbstract
Granulated micelle-clay composites (0.3 to 2 mm) formed from Na-bentonite and the organic cations Octadecyltrimethylammonium (ODTMA), or Benzyldimethylhexadecylammonium (BDMHDA) were employed to remove from water by filtration (a) Escherichia coli S-17 and (b) total bacteria count (TBC). In (a) filters included 4 g to 27 g of complex mixed with sand, and bacteria numbers were 6.4·105 to 5·106/mL. A model which considered convection, adsorption, and desorption simulated the filtration results and yielded predictions. Bacteria capture by filtration was independent of the complex used, but BDMHDA complexes were superior in reducing numbers of emerging bacteria, due to a larger biocidal, or biostatic effect of released cations. Placing a layer of activated carbon after the micelle-clay filter reduced the released cations to 1 μg/L. Regeneration was by: (i) passing a solution of 0.1% NaOCl, or 0.01 M of HCl, or (ii) heating in a furnace at 105 °C for 2.5 h. Capacities for removal of bacteria after first and second regenerations by (i) were 86% and 57% of those with fresh granules, respectively. It is suggested that the technology can provide a safe and economical treatment for drinking water contaminated by pathogenic bacteria. In (b) the capacity of filters was smaller than in (a), but the technology enables to avoid using UV lamps in domestic filters. © 2017 Elsevier B.V.
Azaria, S. ; Nir, S. ; van Rijn, J. Combined adsorption and degradation of the off-flavor compound 2-methylisoborneol in sludge derived from a recirculating aquaculture system. 2017, 169, 69 - 77. Publisher's VersionAbstract
Off-flavor in fish poses a serious threat for the aquaculture industry. In the present study, removal of 2-methylisoborneol (MIB), an off-flavor causing compound, was found to be mediated by adsorption and bacterial degradation in sludge derived from an aquaculture system. A numerical model was developed which augmented Langmuir equations of kinetics of adsorption/desorption of MIB with first order degradation kinetics. When laboratory-scale reactors, containing sludge from the aquaculture system, were operated in a recirculating mode, MIB in solution was depleted to undetectable levels within 6 days in reactors with untreated sludge, while its depletion was incomplete in reactors with sterilized sludge. When operated in an open flow mode, removal of MIB was significantly faster in reactors with untreated sludge. Efficient MIB removal was evident under various conditions, including ambient MIB levels, flow velocities and sludge loads. When operated in an open flow mode, the model successfully predicted steady MIB removal rates with time. During steady state conditions, most of the MIB removal was found to be due to microbial degradation of the adsorbed MIB. Findings obtained in this study can be used in the design of reactors for removal of off-flavor compounds from recirculating aquaculture systems.
Lelario, F. ; Gardi, I. ; Mishael, Y. G. ; Dolev, N. ; Undabeytia, T. ; Nir, S. ; Scrano, L. ; Bufo, S. A. Pairing micropollutants and clay-composite sorbents for efficient water treatment: Filtration and modeling at a pilot scale. Applied Clay Science 2017, 137, 225 - 232. Publisher's VersionAbstract
Organically modified clay minerals have been widely developed, tested and employed as sorbents for organic pollutants. However, the process of pollutant-composite pairing is not commonly addressed, which would be valuable for efficient pollutant filtration by such sorbents. This study presents an approach for achieving efficient pollutant removal by large-scale composite filters, based on pairing chemically compatible pollutants and composites and by employing a predictive filtration model. The removal of three organic pollutants, simazine, sulfentrazone and diclofenac by lab-scale filtration columns containing one of three sorbents, a polymer-, micelle- or liposome-clay composite, was measured. Understanding the factors governing pollutant-organic modifier interactions enabled to pair an efficient sorbent to each pollutant. The high removal (80%) of simazine by the polymer composite, was attributed to hydrogen bonds and π-π interactions, compared to less than 20% removal by the surfactant composites. The removal of the anionic diclofenac (pKa=4.1) was mainly governed by electrostatic attraction, explaining its high removal by the most positively charge sorbent, the liposome composite. Sulfentrazone (pKa=6.5) removal was mostly affected by micellar solubilization and upon its removal, the zeta potential of the micelle-composite was not reduced as obtained for diclofenac removal. The filtration of the successful pairs was modelled to determine sorbent capacity and adsorption and desorption rate constants. The pilot filtration experiments were well described by the model and demonstrated efficient removal of paired pollutants and sorbents. Model simulations predicted promising treatment at environmental pollutant concentrations in the μgL−1 range. This pairing approach along with model calculations can be a strong and valid tool for efficient pollutant-sorbent filtration.
2016
Sulaiman, S. ; Khamis, M. ; Nir, S. ; Scrano, L. ; Bufo, S. A. ; Karaman, R. Diazepam stability in wastewater and removal by advanced membrane technology, activated carbon, and micelle–clay complex. Desalination and Water Treatment 2016, 57, 3098-3106. Publisher's VersionAbstract
Stability and removal of the anti-anxiety drug diazepam (valium) from spiked wastewater samples were studied. An advanced wastewater treatment plant (WWTP), utilizing ultrafiltration (UF), activated charcoal (AC), and reverse osmosis (RO) after the secondary biological treatment showed that UF and RO were relatively sufficient in removing spiked diazepam to a safe level. Kinetic studies in both pure water (abiotic degradation) and in sludge (biotic degradation) at room temperature were investigated. Diazepam showed high chemical stability toward degradation in pure water, and underwent faster biodegradation in sludge providing two main degradation products. The degradation reactions in sludge and pure water showed first-order kinetics with rate constant values of 2.6 × 10−7 s−1 and 9.08 × 10−8 s−1, respectively (half-life = 31 and 88 d, respectively). Adsorption of diazepam by activated carbon and composite micelle–clay (octadecyltrimethylammonium montmorillonite) complex was studied using both Langmuir and Freundlich isotherms. Based on the determination coefficient, Langmuir isotherm was found to better fit the data, indicating the retention of diazepam monolayer on both adsorbents. Filtration of 100 mg L−1 solutions of diazepam by micelle–clay filter yielded almost complete removal at flow rates of 2 mL min−1. © 2014 Balaban Desalination Publications. All rights reserved.
Karaman, R. ; Khamis, M. ; Abbadi, J. ; Amro, A. ; Qurie, M. ; Ayyad, I. ; Ayyash, F. ; Hamarsheh, O. ; Yaqmour, R. ; Nir, S. ; et al. Paracetamol biodegradation by activated sludge and photocatalysis and its removal by a micelle–clay complex, activated charcoal, and reverse osmosis membranes. Environmental Technology (United Kingdom) 2016, 37, 2414-2427. Publisher's VersionAbstract
Kinetic studies on the stability of the pain killer paracetamol in Al-Quds activated sludge demonstrated that paracetamol underwent biodegradation within less than one month to furnish p-aminophenol in high yields. Characterizations of bacteria contained in Al-Quds sludge were accomplished. It was found that Pseudomonas aeruginosa is the bacterium most responsible for the biodegradation of paracetamol to p-aminophenol and hydroquinone. Batch adsorptions of paracetamol and its biodegradation product (p-aminophenol) by activated charcoal and a composite micelle (octadecyltrimethylammonium)–clay (montmorillonite) were determined at 25°C. Adsorption was adequately described by a Langmuir isotherm, and indicated better efficiency of removal by the micelle–clay complex. The ability of bench top reverse osmosis (RO) plant as well as advanced membrane pilot plant to remove paracetamol was also studied at different water matrixes to test the effect of organic matter composition. The results showed that at least 90% rejection was obtained by both plants. In addition, removal of paracetamol from RO brine was investigated by using photocatalytic processes; optimal conditions were found to be acidic or basic pH, in which paracetamol degraded in less than 5 min. Toxicity studies indicated that the effluent and brine were not toxic except for using extra low energy membrane which displayed a half maximal inhibitory concentration (IC-50) value of 80%. © 2016 Taylor & Francis.
Rakovitsky, N. ; Brook, I. ; van Rijn, J. ; Ryskin, M. ; Mkhweli, Z. ; Etkin, H. ; Nir, S. Purification of greywater by a moving bed reactor followed by a filter including a granulated micelle-clay composite. Applied Clay Science 2016, 132-133, 267-272. Publisher's VersionAbstract
Reuse of grey water (GW) enables to reduce fresh water consumption, but a treatment is required to prevent potential transmission and propagation of pathogenic organisms. This study presents results on the removal of pathogenic bacteria from GW as well as reduction of turbidity, TSS COD, and BOD by a novel treatment system. Compared to previous studied methods, three new elements are presented in the current treatment of GW: (1) A granulated complex of micelles of the organic cation octadecyltrimethylammonium (ODTMA) with montmorillonite was employed in filtration of GW. This complex was efficient in purifying GW due to its large surface area, positive charge and existence of hydrophobic domains. The granulated complex enabled flow when present exclusively in the filter; (2). A moving bed reactor for decomposition of part of the organic matter in the GW. This pretreatment stage, prior to the micelle-clay filter, was also efficient in removing pathogenic bacteria; (3) A regeneration stage of the micelle-clay filter conducted by passing either dilute solutions of Na-hypochlorite or HCl through the micelle-clay complex, or by heating the complex. Incubation of GW for either two weeks or one day in the pretreatment stage yielded a 10- and 7-fold enhancement in the volume filtered, which did not contain fecal coliforms, i.e., 300 and 210 L for 40 g of complex, respectively. The capacity of purified volume per gram of the complex increased further several-fold (> 23 L/g) for filters filled exclusively with granules. Regeneration of the complex in the filter further enhanced the capacity. © 2016 Elsevier B.V.