Publications by Year

<embed>

Publications by Authors

225deacc779a0d05aa0cd6165edfbbb9

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 
ISRAEL

tel: 972-8-9489340
fax: 972-8-9475181
neomim@savion.huji.ac.il

Publications

2019
Olk, D. C. ; Bloom, P. R. ; Perdue, E. M. ; McKnight, D. M. ; Chen, Y. ; Farenhorst, A. ; Senesi, N. ; Chin, Y. - P. ; Schmitt-Kopplin, P. ; Hertkorn, N. ; et al. Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. Journal of Environmental Quality 2019, 48, 217-232. Publisher's VersionAbstract
To study the structure and function of soil organic matter, soil scientists have performed alkali extractions for soil humic acid (HA) and fulvic acid (FA) fractions for more than 200 years. Over the last few decades aquatic scientists have used similar fractions of dissolved organic matter, extracted by resin adsorption followed by alkali desorption. Critics have claimed that alkali-extractable fractions are laboratory artifacts, hence unsuitable for studying natural organic matter structure and function in field conditions. In response, this review first addresses specific conceptual concerns about humic fractions. Then we discuss several case studies in which HA and FA were extracted from soils, waters, and organic materials to address meaningful problems across diverse research settings. Specifically, one case study demonstrated the importance of humic substances for understanding transport and bioavailability of persistent organic pollutants. An understanding of metal binding sites in FA and HA proved essential to accurately model metal ion behavior in soil and water. In landscape-based studies, pesticides were preferentially bound to HA, reducing their mobility. Compost maturity and acceptability of other organic waste for land application were well evaluated by properties of HA extracted from these materials. A young humic fraction helped understand N cycling in paddy rice (Oryza sativa L.) soils, leading to improved rice management. The HA and FA fractions accurately represent natural organic matter across multiple environments, source materials, and research objectives. Studying them can help resolve important scientific and practical issues. Copyright © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Ashkenazi, E. ; Chen, Y. ; Avni, Y. Olive tree survival and adaptation to the harsh growing conditions in the arid desert environment of the Negev Highlands, Southern Israel. Israel Journal of Plant Sciences 2019, 65, 147-152. Publisher's VersionAbstract
Twenty-three olive trees were found to grow in traditional orchard sites in the Negev Highlands desert, southern Israel. Their location was marked on maps, and their growth, morphology, biology, preservation and survival was monitored. Some of them are presently maintained by the Bedouin population of the Negev, whereas others seemed to have survived from earlier periods. The average annual rainfall in this region is 90-130 mm. Most of the orchards were deliberately planted in preexisting agricultural plots, built during the Byzantine and Early Muslim era (3rd-8th centuries CE). They were irrigated by harvesting runoff water. The Byzantine era was the most populated period in the Negev Highlands, when wine and olive oil were the main horticultural products. A variety of domesticated fruit trees are found in the present abandoned orchards: olive, fig, grapevine, pomegranate, almond, date palm, carob, pistachio and bitter orange. The trees have not been artificially irrigated for at least seven decades. Nevertheless, most of them continue to flourish and bear fruit. We focused on understanding the abandoned olive trees' survival and adaptation mechanisms. Olive trees growing was a favorite crop to Byzantine farmers due to the significant economic value of olive oil and good adaptation to the environmental conditions in the Negev Highlands. © Koninklijke Brill NV, Leiden, 2018.
Olk, D. C. ; Bloom, P. R. ; De Nobili, M. ; Chen, Y. ; McKnight, D. M. ; Wells, M. J. M. ; Weber, J. Using humic fractions to understand natural organic matter processes in soil and water: Selected studies and applications. Journal of Environmental Quality 2019, 48, 1633-1643. Publisher's VersionAbstract
Natural organic matter (NOM) plays key environmental roles in both aquatic and soil systems. A long-standing approach for evaluating NOM composition and activity is to extract soils with alkali solutions to obtain humic substances, namely humic acids (HA), and fulvic acids (FA), or to briefly expose isolated fractions of dissolved organic matter to alkali. Critics have claimed these methods create laboratory artifacts and are thus unsuitable for studying NOM behavior in field conditions. In response, we describe case studies in which humic fractions were analyzed to identify significant processes in environmental or agricultural issues. Specifically, humic fractions played a key role in maintaining toxic levels of arsenic (As) in drinking water supplies in South and Southeast Asia. Elsewhere, binding reactions of FA and HA with prions were shown to provide a plausible mechanism for variable persistence of prion infectivity across soil types. Humic substances were also shown to enhance iron (Fe) uptake by plants in solution culture and field conditions. Their specific binding sites for mercury (Hg) as determined in laboratory conditions enabled accurate modeling of soil Hg binding under varying conditions. A young HA fraction reproduced in controlled conditions the capacity of animal manure to maintain potassium (K) availability in strongly K-fixing field soils, leading to development of a commercially successful humic-K fertilizer. Humic fractions accurately represented NOM across multiple settings and research objectives while providing novel opportunities for advanced analyses. The study of humic fractions has helped resolve scientific and practical issues in aquatic and soil systems. © 2019 The Author(s).
Ashkenazi, E. ; Avni, Y. ; Chen, Y. The vitality of fruit trees in ancient Bedouin orchards in the Arid Negev Highlands (Israel): Implications of climatic change and environmental stability. Quaternary International 2019. Publisher's VersionAbstract
Thirty-seven sites with fruit tree orchards were found in the arid Negev Highlands of southern Israel. A variety of domesticated fruit trees were planted in these orchards, including date palm, fig, olive, pomegranate, almond, carob, pistachio, grapevine and bitter orange. The orchards were irrigated only by runoff water accumulating in runoff-harvesting systems built during the Byzantine and Early Muslim eras, some 1000–1500 years ago, which, despite their antiquity, are still vivid and occasionally fruit bearing today. The oldest olive trees seem to be direct descendants of trees planted during Byzantine times, whereas the youngest trees were planted by the Bedouin population of the Negev Highlands in the last few decades. The fact that the Bedouin population, with very little experience in agriculture, has succeeded to cultivate a large variety of fruit trees in the present harsh arid climate utilizing the historical agricultural installations has important environmental implications. It indicates that the original builders of the desert agriculture systems were highly sophisticated in transforming desert soil into arable land. However, this was achieved through hard labor, involving the construction of a vast number of stone dams and agricultural terraces to divert channels, and the clearing of rocky surfaces. This huge effort indicates that the climate and environment prevailing during the Byzantine–Early Muslim eras was equally harsh and arid; otherwise, the invested labor would not have been justified. We conclude that the Byzantine farmers, with their greater agricultural experience and long heritage in dry land agriculture, have achieved greater success than today Bedouin population, at cultivating of fruit trees under the harsh conditions of the Negev Highlands. Therefore we deduce that the ancient desert agriculture was not the outcome of better climate; rather, the climate prevailing during the relevant historical times was probably dry and harsh, much like today. The fact that the Bedouin population in that geograghical area is cultivating orchards utilizing the same constructions, and technologies indicates that the present environmental and climatic conditions were are suitable for practicing desert agriculture and have hardly changed since the Byzantine era. © 2019 Elsevier Ltd and INQUA
2018
Ben Mordechay, E. ; Tarchitzky, J. ; Chen, Y. ; Shenker, M. ; Chefetz, B. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine. Environmental Pollution 2018, 232, 164-172. Publisher's VersionAbstract
Irrigation with treated wastewater (TWW) and application of biosolids to arable land expose the agro-environment to pharmaceuticals and personal care products (PPCPs) which can be taken up by crops. In this project, we studied the effect of a carrier medium (e.g., biosolids and TWW) on plant (tomato, wheat and lettuce) uptake, translocation and metabolism of carbamazepine as a model for non-ionic PPCPs. Plant uptake and bioconcentration factors were significantly lower in soils amended with biosolids compared to soils irrigated with TWW. In soils amended with biosolids and irrigated with TWW, the bioavailability of carbamazepine for plant uptake was moderately decreased as compared to plants grown in soils irrigated with TWW alone. While TWW acts as a continuous source of PPCPs, biosolids act both as a source and a sink for these compounds. Moreover, it appears that decomposition of the biosolids in the soil after amendment enhances their adsorptive properties, which in turn reduces the bioavailability of PPCPs in the soil environment. In-plant metabolism of carbamazepine was found to be independent of environmental factors, such as soil type, carrier medium, and absolute amount implemented to the soil, but was controlled by the total amount taken up by the plant. Bioavailability of PPCPs originated from biosolids amendment is lower than the bioavailability of those introduced by irrigation with treated wastewater. © 2017 Elsevier Ltd
Rosen, V. ; Chen, Y. Effects of compost application on soil vulnerability to heavy metal pollution. Environmental Science and Pollution Research 2018, 25, 35221-35231. Publisher's VersionAbstract
Soil vulnerability to heavy metal pollution is low in soils exhibiting an ability to strongly adsorb heavy metals on their geochemical fractions. Organic matter (OM) is among other components of soils, one of the most effective sorbing fractions. Compost addition is often used for soil remediation thereby enriching the soil with OM. However, compost is often enriched with heavy metals and thereby may induce adverse effects on the soil and plants growing in them. Compost-derived dissolved organic matter (DOM) can mobilize heavy metals. The balance between two contrasting effects of compost—mobilization and immobilization of heavy metals—was studied under the conditions of adsorption–desorption batch experiment. Metal adsorption to different geochemical fractions of soil treated with compost was examined by a combined batch-adsorption experiment and a sequential extraction procedure. Compost-derived DOM mobilized Cu at low loading levels, whereas adsorption of Cd and Pb was not decreased by DOM application. Compost was found to be a source of an important reducible oxides fraction (RO—sorbing and fixation fraction) and also of the OM geochemical fractions that most commonly immobilizes heavy metals. The Langmuir and Freundlich models employed in our study exhibited a good fit for most of data the experimental data obtained on bulk samples. Adsorption of the metals on operationally defined geochemical fractions was described by a linear function in several experimental instances. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
Green, O. ; Katz, S. ; Tarchitzky, J. ; Chen, Y. Formation and prevention of biofilm and mineral precipitate clogging in drip irrigation systems applying treated wastewater. Irrigation Science 2018, 36, 257-270. Publisher's VersionAbstract
Pressure-irrigation systems and, in particular, micro-irrigation provide an effective methodology for increasing irrigation efficiency. However, emitter clogging is a major problem in micro-irrigation systems, especially under irrigation with treated wastewater (TWW). Currently, farmers treat their irrigation system by periodical application of solutions of chemicals or washing the lateral lines. The aim of this study was to characterize treatments for the prevention of clogging in drip irrigation systems utilizing different qualities of TWW (secondary and tertiary TWW). A model system was designed and assembled to compare the flow rate (FR), fouling accumulation and fouling composition in laterals and drippers subjected to different treatments. Under irrigation with secondary TWW, control treatment function decreased rapidly while chemical treatment prolonged proper function of the drippers by maintaining a normal FR and coefficient of variation (CV). Wash treatment improved to some extent the irrigation function. Under irrigation with tertiary TWW the function of all treatments was significantly better than that of the secondary treatments. The total suspended solids level was found to be a significant factor in the mechanism of clogging formation according to biofouling development. The deposit chemical characterization could shed light on the mode of growth mechanism and properties of the biofouling. In general, oxidation treatments using hydrogen peroxide or hypochlorite acid were found to eliminate biofouling and in accordance also prevented clogging. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
Rosen, V. V. ; Garber, O. G. ; Chen, Y. Magnesium deficiency in tap water in Israel: The desalination era. Desalination 2018, 426, 88-96. Publisher's VersionAbstract
Water desalination has been extensively developed in Israel, particularly in the last decade. The desalination process provides fresh water that typically lacks minerals, and among these are ions that are essential to human health and/or to agricultural production, such as Mg. We analyzed 28 tap water samples originating from different cities across Israel to document their concentrations of Mg and other elements. The data from this survey (summer 2016) were compared with the results of similar observations conducted in 2008. Regarding toxic elements, tap water across Israel does not pose any health risk for consumers and may be used as drinking water without any household pretreatment. This condition has not changed since 2008. However, the problem of Mg deficiency due to the use of desalinated water was observed in about half of the sampling locations in 2016, whereas no Mg deficiency had been detected in 2008. Moreover, household filtration of tap water prior to consumption as drinking water may worsen the situation due to the Mg status resulting from rejection of this ion; this could be harmful to the consumer, particularly under prolonged exposure. © 2017 Elsevier B.V.
Weber, J. ; Chen, Y. ; Jamroz, E. ; Miano, T. Preface: humic substances in the environment. Journal of Soils and Sediments 2018, 18, 2665-2667. Publisher's Version
Katz, S. ; Wagner, M. ; Horn, H. ; Tarchitzky, J. ; Chen, Y. Size and stability of suspended aggregates in municipal effluents containing montmorillonite, bacteria and fulvic acid. Irrigation Science 2018, 36, 203-216. Publisher's VersionAbstract
Utilizing treated wastewater (TWW) for irrigation results in biological and chemical deposits. TWW components such as bacteria and suspend minerals interact under different environmental conditions, forming aggregates varying in size and stability that may adversely affect water flow in drippers. Our aim in this study was to characterize aggregates’ size and stability in suspensions of bacteria and clay particles, under different conditions prevailing in TWW. Flocculation value tests, thermal analysis, microscopy and particle size distribution were used to measure bacterial–clays interaction in suspension. Our results showed suspension stability increase with an increase in bacterial population. Dissolved organic carbon (DOC) produced by bacteria or added as fulvic acid was found to be the most important parameter involved in determining aggregate size and stability under similar environmental condition. The presence of these components most commonly resulted in higher stability of the suspension, mainly smaller particles in suspension. A novel measurement aimed to determine size and stability parameters for suspended particles has been established and was found to be useful in predicting suspended compound interactions. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
Avidov, R. ; Saadi, I. ; Krasnovsky, A. ; Medina, S. ; Raviv, M. ; Chen, Y. ; Laor, Y. Using polyethylene sleeves with forced aeration for composting olive mill wastewater pre-absorbed by vegetative waste. Waste Management 2018, 78, 969-979. Publisher's VersionAbstract
Composting in closed polyethylene sleeves with forced aeration may minimize odor emissions, vectors attraction and leachates associated with open windrows. The present study demonstrates the use of this system for composting olive mill wastewater (OMW), the undesired stream associated with the olive milling industry. A polyethylene sleeve of 1.5-m diameter and ca. 20-m long was packed with shredded municipal green waste which was pre-soaked in OMW for 72 h. Process conditions were controlled by means of a programmable logic controller (PLC) equipped with temperature and oxygen sensors. Thermophilic temperatures (>45 °C) were maintained for one month followed by temperatures in the range of 30–40 °C, ca. 20 °C above ambient temperature, for a period of 3.5 months. Oxygen levels were controlled and the system was kept aerobic. Water content gradually decreased with sufficient levels for efficient composting. The finished compost was non-phytotoxic to Cress (Lepidium sativum L.) in a lab bioassay. It was also found suitable as an ingredient in peat, tuff, and coir based growing media, evaluated by plant growth tests with basil and ornamental plants. The viability of this approach for disposing off OMW is much dependent on the liquid absorption capacity of the vegetative waste. © 2018 Elsevier Ltd
2017
Lichner, L. ; Rodný, M. ; Marschner, B. ; Chen, Y. ; Nadav, I. ; Tarchitzky, J. ; Schacht, K. Comparison of various techniques to estimate the extent and persistence of soil water repellency. Biologia (Poland) 2017, 72, 982-987. Publisher's VersionAbstract
New techniques to estimate the extent and persistence of soil water repellency (SWR) were compared with commonly used techniques in assessing the results taken in the long-term agricultural experimental orchards in northern Israel irrigated with either freshwater (FW), primary treated wastewater (WW) or (secondary or tertiary) treated wastewater (TWW), where SWR induced by irrigation was registered (Ha Ma'apil, Neve Etan, and Shafdan). The extent of SWR was assessed by the repellency index RI, combined repellency index RI c and modified repellency index RI m . The persistence of SWR was assessed by the water drop penetration time WDPT and water repellency cessation time WRCT. Soils from different textural classes were classified as slightly to strongly water repellent according to WDPT or RI values. Relationship between RI c and RI values can be well fitted by the linear equation, i.e., RI c could be a good substitute for RI. Relationships between WRCT and WDPT values as well as RI m and RI c or RI values cannot be accurately described by the linear equation, i.e., RI m is not a good substitute for RI for the values taken in this study. © 2017 Institute of Botany, Slovak Academy of Sciences 2017.
Avidov, R. ; Saadi, I. ; Krassnovsky, A. ; Hanan, A. ; Medina, S. ; Raviv, M. ; Chen, Y. ; Laor, Y. Composting municipal biosolids in polyethylene sleeves with forced aeration: Process control, air emissions, sanitary and agronomic aspects. Waste Management 2017, 67, 32-42. Publisher's VersionAbstract
Composting in polyethylene sleeves with forced aeration may minimize odor emissions, vectors attraction and leachates associated with open windrows. A disadvantage of this technology is the lack of mixing during composting, potentially leading to non-uniform products. In two pilot experiments using biosolids and green waste (1:1; v:v), thermophilic conditions (>45 °C) were maintained for two months, with successful control of oxygen levels and sufficient moisture. Emitted odors declined from 1.5–3.8 × 105 to 5.9 × 103–2.3 × 104 odor units m−3-air in the first 3 weeks of the process, emphasizing the need of odor control primarily during this period. Therefore, composting might be managed in two phases: (i) a closed sleeve for 6–8 weeks during which the odor is treated; (ii) an open pile (odor control is not necessary). Reduction of salmonella, E. coli and coliforms was effective initially, meeting the standards of “Class A” biosolids; however, total and fecal coliforms density increased after opening the second sleeve and exceeded the standard of 1000 most probable number (MPN) per g dry matter. Compost maturity was achieved in the open piles following the two sleeves and the final compost was non-phytotoxic and beneficial as a soil additive. © 2017 Elsevier Ltd
Frenkel, C. ; Hadar, Y. ; Chen, Y. Laboratory-scale production and purification of the iron chelator rhizoferrin: A novel Fe supplier to plants. Israel Journal of Plant Sciences 2017, 64, 136-144. Publisher's VersionAbstract
Rhizopus arrhizus was grown in an iron-free nutrient solution growth medium. Mass production of the siderophores was achieved in a short time by continuous growth of the fungi: after the secretion of the siderophores into the growth medium the spent medium was collected and replaced by a fresh medium while the fungus mat was kept in the flask. The medium exchange was repeated several times and the optimal time for the collection of the siderophore was found to be when the fungus was fully developed, usually about 3 days after the exchange. It was found that it is feasible to grow the fungi continuously for five growth periods, after which the fungus culture becomes too old and collapses. The siderophore was isolated and cleaned from the spent medium using a series of columns on an FPLC at room temperature. Additional tests were used to verify the existence of the siderophore in the solution. The concentrations of rhizoferrin in the various fractions was measured using an exchange reaction between the siderophore and that of an added chelate solution (CAS) while employing a series of dilutions of the CAS. For a precise analytical determination of the siderophore rhizoferrin, Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS) was used to validated that the siderophore is indeed rhizoferrin which has been structurally identified earlier. © 2017 by Koninklijke Brill NV, Leiden, The Netherlands.
Qian, J. ; Horn, H. ; Tarchitzky, J. ; Chen, Y. ; Katz, S. ; Wagner, M. Water quality and daily temperature cycle affect biofilm formation in drip irrigation devices revealed by optical coherence tomography. Biofouling 2017, 33, 211-221. Publisher's VersionAbstract
Drip irrigation is a water-saving technology. To date, little is known about how biofilm forms in drippers of irrigation systems. In this study, the internal dripper geometry was recreated in 3-D printed microfluidic devices (MFDs). To mimic the temperature conditions in (semi-) arid areas, experiments were conducted in a temperature controlled box between 20 and 50°C. MFDs were either fed with two different treated wastewater (TWW) or synthetic wastewater. Biofilm formation was monitored non-invasively and in situ by optical coherence tomography (OCT). 3-D OCT datasets reveal the major fouling position and illustrate that biofilm development was influenced by fluid dynamics. Biofilm volumetric coverage of the labyrinth up to 60% did not reduce the discharge rate, whereas a further increase to 80% reduced the discharge rate by 50%. Moreover, the biofilm formation rate was significantly inhibited in daily temperature cycle independent of the cultivation medium used. © 2017 Informa UK Limited, trading as Taylor & Francis Group.
Nadav, I. ; Tarchitzky, J. ; Chen, Y. Water repellency reduction using soil heating in infiltration ponds of a wastewater soil aquifer treatment (SAT). Journal of Plant Nutrition and Soil Science 2017, 180, 142-152. Publisher's VersionAbstract
Reuse of treated wastewater (TWW) for irrigation in agriculture is a common alternative water source in arid regions suffering from fresh water (FW) shortage. Soil aquifer treatment (SAT) is frequently used for advanced TWW purification. Infiltration rates of water through the soil can decrease as a consequence of organic matter (OM) accumulation and the consequent induction of water repellency. In this research, soil heating to high temperatures was examined for its efficiency in OM content reduction and increased infiltration. In a laboratory experiment conducted using a hand burner and a combustion oven, water repellency was found to be reduced following increased heating temperature or heating duration, directly resulting in reduction of OM level. Chemical analysis of OM extracted from the heat treated soils revealed reduction in hydrophobic substances as a consequence of increased temperatures by soil heating and heating duration. In model ponds built to simulate large infiltration basins, OM content was reduced as a result of intensive and moderate soil heating in comparison to the untreated pond. However, no reduction in water repellency and only slight changes in infiltration rate were found as a consequence of soil heating. The differences in results obtained in the laboratory and the field experiments were probably related to the fact that the soil in the field experiment has been continuously reloaded with TWW containing OM. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Nadav, I. ; Tarchitzky, J. ; Chen, Y. Water repellency reduction using Soil heating in infiltration ponds of a wastewater soil aquifer treatment (SAT). Zeitschrift fur Pflanzenernahrung und Bodenkunde 2017, 180, 142-152. Publisher's VersionAbstract
Reuse of treated wastewater (TWW) for irrigation in agriculture is a common alternative water source in arid regions suffering from fresh water (FW) shortage. Soil aquifer treatment (SAT) is frequently used for advanced TWW purification. Infiltration rates of water through the soil can decrease as a consequence of organic matter (OM) accumulation and the consequent induction of water repellency. In this research, soil heating to high temperatures was examined for its efficiency in OM content reduction and increased infiltration. In a laboratory experiment conducted using a hand burner and a combustion oven, water repellency was found to be reduced following increased heating temperature or heating duration, directly resulting in reduction of OM level. Chemical analysis of OM extracted from the heat treated soils revealed reduction in hydrophobic substances as a consequence of increased temperatures by soil heating and heating duration. In model ponds built to simulate large infiltration basins, OM content was reduced as a result of intensive and moderate soil heating in comparison to the untreated pond. However, no reduction in water repellency and only slight changes in infiltration rate were found as a consequence of soil heating. The differences in results obtained in the laboratory and the field experiments were probably related to the fact that the soil in the field experiment has been continuously reloaded with TWW containing OM. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016
Reichmann, O. ; Chen, Y. ; Litaor, I. M. The impact of rainfall-runoff events on the water quality of the upper catchment of the Jordan River, Israel; Integrated Water Resources Management: Concept, Research and Implementation; 2016; pp. 129-146. Publisher's VersionAbstract
This study examined the influence of rainfall-runoff events on water quality of the Upper Catchment of the Jordan River (UCJR) with a special emphasize on P fate and transport. We sampled 60 locations across the catchment to test the hypothesis that under Mediterranean climate conditions, most of the nutrient losses from the fields to waterways will occur in few major events while the actual contributing areas will be limited to critical source areas (CSA). Water analyses included nutrients (SRP, TP, TSS, NO3, & NH4), fecal indicators (Fecal Coliforms, E-Coli and Enterococcus) and EC & pH. Spatial analysis was conducted to identify CSA. In general, the results demonstrated the influence of runoff events on the water quality in the UCJR and the high heterogeneity of these events in space and time. The study showed that the levels of SRP, TP, TSS as well as indicators of fecal contamination were primarily transported with surface runoff and increased significantly in the stream during these events. Phosphorous concentrations in some sub-catchments reached extremely high concentrations (19 mg/l) during runoff compared with an average of 1.9 mg/l for the entire watershed. The medium to high correlation between the fecal indicators, total P and TSS suggest that during runoff events, P and bacteria attached to soil particles were mobilized to the stream from CSA. Water sampling along the streams flow paths together with the spatial analysis, identified CSA where an elevated nutrient concentration has been identified. Autocorrelation test identified CSA where an external pollution source influences the water nutrients content. The study provides watershed management science-based remediation options to reduce the potential of water pollution during major rainfall-runoff events. © Springer International Publishing Switzerland 2016. All rights are reserved.
Rosen, V. ; Chen, Y. A novel automated method for the adjustment of ionic metal concentrations in soil extracts. Journal of Plant Nutrition and Soil Science 2016, 179, 615-617. Publisher's VersionAbstract
A novel method is proposed for correcting metal fraction concentrations remaining within the sediment containing the solid residue of the sequentially extracted fraction. An easy-to-use Excel spreadsheet was prepared to assist adjustment of concentration in each fraction and demonstrate the difference between adjusted and non-adjusted metal concentration of the fraction. The demonstration of a calculation of the modified BCR protocol data showed that this difference may reach 10–15% of the result value. The spreadsheet is available to download at: http://departments.agri.huji.ac.il/zabam/Rosen_Chen_Fraction_Adjustment_.... Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Schacht, K. ; Chen, Y. ; Tarchitzky, J. ; Marschner, B. The use of treated wastewater for irrigation as a component of integrated water resources management: Reducing environmental implications on soil and groundwater by evaluating site-specific soil sensitivities; Integrated Water Resources Management: Concept, Research and Implementation; 2016; pp. 459-470. Publisher's VersionAbstract
The use of non-conventional water resources like treated wastewater (TWW) is a contribution to alleviate the pressure on available natural water resources in water scarce regions, as it allows higher quality water to be available for other purposes. Population growth, improved living standards and expected climate change impacts will raise the importance of water reuse progressively. TWW can be utilized for various purposes, such as for irrigation, conservation, groundwater recharge or domestic and industrial use. In the eastern Mediterranean region, irrigation with water of marginal quality has a long history, with Israel being the promoting pioneer in advanced treated wastewater use policy and technology. However, apart from health and crop quality concerns, there are potential adverse effects of TWW application on soil and groundwater quality to be considered. In aiming to avoid unsustainable exposures, the regional risks related with TWW irrigation have to be specified and differentiated according to regional soil properties. Within the multinational joint research project network GLOWA (Global Change and the Hydrological Cycle) Jordan River, a regional based land evaluation was conducted for the area of Israel, Jordan and the Palestinian Authority by combining supraregional spatial soil data using a geographic information system (GIS). These data were used to identify land more or less sensitive towards TWW irrigation and for the implementation in regional decision support systems (DSS) related to water allocation and the extension of irrigation infrastructure. © Springer International Publishing Switzerland 2016. All rights are reserved.