Publications by Year


Publications by Authors


Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 

tel: 972-8-9489340
fax: 972-8-9475181

A proof of concept study demonstrating that environmental levels of carbamazepine impair early stages of chick embryonic development


Kohl, A. ; Golan, N. ; Cinnamon, Y. ; Genin, O. ; Chefetz, B. ; Sela-Donenfeld, D. A proof of concept study demonstrating that environmental levels of carbamazepine impair early stages of chick embryonic development. Environment International 2019, 129, 583-594.


Carbamazepine (CBZ)is an anticonvulsant drug used for epilepsy and other disorders. Prescription of CBZ during pregnancy increases the risk for congenital malformations. CBZ is ubiquitous in effluents and persistent during wastewater treatment. Thus, it is re-introduced into agricultural ecosystems upon irrigation with reclaimed wastewater. People consuming produce irrigated with reclaimed wastewater were found to be exposed to CBZ. However, environmental concentrations of CBZ (μg L−1)are magnitudes lower than its therapeutic levels (μg ml−1), raising the question of whether and how environmental levels of CBZ affect embryonic development. The chick embryo is a powerful and highly sensitive amniotic model system that enables to assess environmental contaminants in the living organism. Since the chick embryonic development is highly similar to mammalians, yet, it develops in an egg, toxic effects can be directly analyzed in a well-controlled system without maternal influences. This research utilized the chick embryo to test whether CBZ is embryo-toxic by using morphological, cellular, molecular and imaging strategies. Three key embryonic stages were monitored: after blastulation (st.1HH), gastrulation/neurulation (st.8HH)and organogenesis (st.15HH). Here we demonstrate that environmental relevant concentrations of CBZ impair morphogenesis in a dose- and stage- dependent manner. Effects on gastrulation, neural tube closure, differentiation and proliferation were exhibited in early stages by exposing embryos to CBZ dose as low as 0.1 μg L−1. Quantification of developmental progression revealed a significant difference in the total score obtained by CBZ-treated embryos compared to controls (up to 5-fold difference, p < 0.05). Yet, defects were unnoticed as embryos passed gastrulation/neurulation. This study provides the first evidence for teratogenic effect of environmental-relevant concentrations of CBZ in amniotic embryos that impair early but not late stages of development. These findings call for in-depth risk analysis to ensure that the environmental presence of CBZ and other drugs is not causing irreversible ecological and public-health damages. © 2019