Publications by Year

<embed>

Publications by Authors

225deacc779a0d05aa0cd6165edfbbb9

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 
ISRAEL

tel: 972-8-9489340
fax: 972-8-9475181
neomim@savion.huji.ac.il

Polycyclodextrin–Clay Composites: Regenerable Dual-Site Sorbents for Bisphenol A Removal from Treated Wastewater

Citation:

Shabtai, I. A. ; Mishael, Y. G. Polycyclodextrin–Clay Composites: Regenerable Dual-Site Sorbents for Bisphenol A Removal from Treated Wastewater. ACS Applied Materials & Interfaces 2018, 10, 27088 - 27097.

Date Published:

2018

Abstract:

The greatest challenge of wastewater treatment is the removal of trace concentrations of persistent micropollutants in the presence of the high concentration of effluent organic matter (EfOM). Micropollutant removal by sorbents is a common practice, but sorbent employment is often limited because of fouling induced by EfOM and challenging sorbent regeneration. We directly addressed these two issues by designing regenerable dual-site composite sorbents based on polymerized β-cyclodextrin, modified with a cationic group (pCD+) and adsorbed to montmorillonite (pCD+-MMT). This dual-site composite was tailored to simultaneously target an emerging micropollutant, bisphenol A (BPA), through inclusion in β-cyclodextrin cavities and target anionic EfOM compounds, through electrostatic interactions. The removal of BPA from treated wastewater by the composite was not compromised despite the high removal of EfOM. The composites outperformed many recently reported sorbents. Differences in composite performance was discussed in terms of their structures, as characterized with TGA, XRD, BET and SEM. The simultaneous filtration of BPA and EfOM from wastewater by pCD+-MMT columns was demonstrated. Furthermore, successful in-column regeneration was obtained by selectively eluting EfOM and BPA, with brine and alkaline solutions, respectively. Finally, the composites removed trace concentrations of numerous high priority micropollutants from treated wastewater more efficiently than commercial activated carbon. This study highlights the potential to design novel dual-site composites as selective and regenerable sorbents for advanced wastewater treatment.The greatest challenge of wastewater treatment is the removal of trace concentrations of persistent micropollutants in the presence of the high concentration of effluent organic matter (EfOM). Micropollutant removal by sorbents is a common practice, but sorbent employment is often limited because of fouling induced by EfOM and challenging sorbent regeneration. We directly addressed these two issues by designing regenerable dual-site composite sorbents based on polymerized β-cyclodextrin, modified with a cationic group (pCD+) and adsorbed to montmorillonite (pCD+-MMT). This dual-site composite was tailored to simultaneously target an emerging micropollutant, bisphenol A (BPA), through inclusion in β-cyclodextrin cavities and target anionic EfOM compounds, through electrostatic interactions. The removal of BPA from treated wastewater by the composite was not compromised despite the high removal of EfOM. The composites outperformed many recently reported sorbents. Differences in composite performance was discussed in terms of their structures, as characterized with TGA, XRD, BET and SEM. The simultaneous filtration of BPA and EfOM from wastewater by pCD+-MMT columns was demonstrated. Furthermore, successful in-column regeneration was obtained by selectively eluting EfOM and BPA, with brine and alkaline solutions, respectively. Finally, the composites removed trace concentrations of numerous high priority micropollutants from treated wastewater more efficiently than commercial activated carbon. This study highlights the potential to design novel dual-site composites as selective and regenerable sorbents for advanced wastewater treatment.

Notes:

doi: 10.1021/acsami.8b09715

Publisher's Version

Last updated on 07/11/2019