check
The impact of mucilage on root water uptake—A numerical study | Soil and Water Sciences

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
Herzl 229  Rehovot 7610001
ISRAEL

tel: 972-8-9489223
fax: 972-8-9475181
morze@savion.huji.ac.il

The impact of mucilage on root water uptake—A numerical study

Citation:

Schwartz, N. ; Carminati, A. ; Javaux, M. . The Impact Of Mucilage On Root Water Uptake&Mdash;A Numerical Study. Water Resources Research 2016, 52, 264-277.

Abstract:

Abstract The flow of water between soil and plants follows the gradient in water potential and depends on the hydraulic properties of the soil and the root. In models for root water uptake (RWU), it is usually assumed that the hydraulic properties near the plant root (i.e., in the rhizosphere) and in the bulk soil are identical. Yet a growing body of evidence has shown that the hydraulic properties of the rhizosphere are affected by root exudates (specifically, mucilage) and markedly differ from those of the bulk soil. In this work, we couple a 3-D detailed description of RWU with a model that accounts for the rhizosphere-specific properties (i.e., rhizosphere hydraulic properties and a nonequilibrium relation between water content and matric head). We show that as the soil dries out (due to water uptake), the higher water holding capacity of the rhizosphere results in a delay of the stress onset. During rewetting, nonequilibrium results in a slower increase of the rhizosphere water content. Furthermore, the inverse relation between water content and relaxation time implies that the drier is the rhizosphere the longer it takes to rewet. Another outcome of nonequilibrium is the small fluctuation of the rhizosphere water content compared to the bulk soil. Overall, our numerical results are in agreement with recent experimental data and provide a tool to further examine the impact of various rhizosphere processes on RWU and water dynamics.

Publisher's Version

Last updated on 12/26/2019