Publications by Year


Publications by Authors


Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 

tel: 972-8-9489340
fax: 972-8-9475181

Dual functionality of an Ag-Fe3O4-carbon nanotube composite material: Catalytic reduction and antibacterial activity


Bhaduri, B. ; Engel, M. ; Polubesova, T. ; Wu, W. ; Xing, B. ; Chefetz, B. Dual functionality of an Ag-Fe3O4-carbon nanotube composite material: Catalytic reduction and antibacterial activity. Journal of Environmental Chemical Engineering 2018, 6 4103 - 4113.

Date Published:



Carbon-based nanomaterials have remarkable chemical and biological features. The introduction of supporting magnetic materials onto carbon-based nanoparticles has gained interest owing to their easy separation from heterogeneous systems. Herein, we report the synthesis of a novel composite comprised of single-walled carbon nanotubes, Fe3O4 and Ag nanoparticles with an aim to develop a bifunctional composite for water purification that maintains both high catalytic and antibacterial activities. The composite facilitated decomposition of nitrophenols and methyl orange in the presence of NaBH4 as the reducing agent – maintaining high activity (>90%) following three regeneration cycles. The composite’s catalytic activity was unaffected by the presence of dissolved organic matter (DOM) at an environmentally relevant concentration of 5 mg C L−1. DOM concentration of 50 mg C L−1 slightly decreased the reduction of p-nitrophenol, 2-methyl-p-nitrophenol, and methyl orange (by ∼14%, ∼11%, and ∼10% respectively) but significantly decreased that of o-nitrophenol (by 38%). The composite exhibited high antibacterial activity towards gram-negative and gram-positive bacteria even in the presence of DOM at an environmentally relevant concentration. However, the composite’s efficiency decreased with increase in DOM concentration. This study demonstrates dual catalytic and antibacterial activity of a novel Ag-Fe3O4-single walled carbon nanotube composite material in the absence and presence of DOM, and considers its potential implementation in water/wastewater treatment applications.

Publisher's Version

Last updated on 07/11/2019