check
Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment | Soil and Water Sciences

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
Herzl 229  Rehovot 7610001
ISRAEL

tel: 972-8-9489223
fax: 972-8-9475181
morze@savion.huji.ac.il

Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment

Citation:

Brienza, M. ; Nir, S. ; Plantard, G. ; Goetz, V. ; Chiron, S. . Combining Micelle-Clay Sorption To Solar Photo-Fenton Processes For Domestic Wastewater Treatment. Environmental Science and Pollution Research 2019, 26, 18971-18978.

Abstract:

A tertiary treatment of effluent from a biological domestic wastewater treatment plant was tested by combining filtration and solar photocatalysis. Adsorption was carried out by a sequence of two column filters, the first one filled with granular activated carbon (GAC) and the second one with granulated nano-composite of micelle-montmorillonite mixed with sand (20:100, w/w). The applied solar advanced oxidation process was homogeneous photo-Fenton photocatalysis using peroxymonosulfate (PMS) as oxidant agent. This combination of simple, robust, and low-cost technologies aimed to ensure water disinfection and emerging contaminants (ECs, mainly pharmaceuticals) removal. The filtration step showed good performances in removing dissolved organic matter and practically removing all bacteria such as Escherichia coli and Enterococcus faecalis from the secondary treated water. Solar advanced oxidation processes were efficient in elimination of trace levels of ECs. The final effluent presented an improved sanitary level with acceptable chemical and biological characteristics for irrigation. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Website