Publications by Year


Publications by Authors


Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 

tel: 972-8-9489340
fax: 972-8-9475181

Catalytic polymer-clay composite for enhanced removal and degradation of diazinon


Shabtai, I. A. ; Mishael, Y. G. Catalytic polymer-clay composite for enhanced removal and degradation of diazinon. J Hazard Mater 2017, 335, 135-142.

Date Published:

2017 Aug 05


It is well established that organophosphate pesticides, such as diazinon, pose environmental and health risks. Diazinon is prone to rapid acidic hydrolysis, forming the less toxic compound 2-isopropyl-6-methyl-4-pyrimidinol (IMP). In this study, diazinon surface catalyzed hydrolysis was achieved by its adsorption to a composite, based on protonated poly (4-vinyl-pyridine-co-styrene) (HPVPcoS) and montmorillonite (MMT) clay. The adsorption affinity and kinetics of diazinon to HPVPcoS-MMT were significantly higher than those obtained to the deprotonated PVPcoS-MMT, emphasizing the importance of hydrogen bonding. Correspondingly, diazinon filtration by HPVPcoS-MMT columns was highly efficient (100% for 100 pore volumes), while filtration by columns of PVPcoS-MMT or granular activated carbon (GAC) reached only 55% and 85%, respectively. Regeneration of HPVPcoS-MMT by pH increase was demonstrated and sorbent reuse was successful, whereas regeneration and reuse of GAC and PVPcoS-MMT were inefficient. Proton transfer from HPVPcos-MMT to diazinon, investigated by FTIR analysis, supports the suggested mechanism of surface catalyzed hydrolysis. These findings demonstrate the applicability of such bi-functional sorbents, to adsorb and degrade pollutants, for efficient water treatment.

Last updated on 12/23/2019