Publications by year

<embed>

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 
ISRAEL

tel: 972-8-9489340
fax: 972-8-9475181
neomim@savion.huji.ac.il

Interactions of organic dye with Ag- and Ce-nano-assemblies: Influence of dissolved organic matter

Citation:

Bhaduri, B. ; Polubesova, T. ; Chefetz, B. Interactions of organic dye with Ag- and Ce-nano-assemblies: Influence of dissolved organic matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 577, 683 - 694.

Date Published:

2019

Abstract:

Rapid industrialization leads to the introduction of dyes and nanoparticles (NPs) into the environment posing threats to water quality and aquatic organisms. The highly reactive NPs are known to interact with dyes to form stable NPs-dye complexes. Herein, we report the adsorptive interactions of two inorganic NPs, Ag-Ag2S and CeO2 with cationic methylene blue. Experiments were also performed with NPs coated with 2 types of dissolved organic matter. The maximal adsorption capacities for methylene blue with Ag-Ag2S and CeO2 were calculated to be 16.64 and 5.35 mg g−1, respectively. The obtained adsorption capacities are attributed to electrostatic interactions (attractive/repulsive) between the NPs and the dyes and also the van der Waals force of interaction between the dye molecules. DOM coatings on the NPs significantly reduced the adsorption of dyes (maximum adsorption capacities for methylene blue with DOM coated Ag-Ag2S and CeO2 were reduced by ˜40% and ˜61%, respectively; the more hydrophobic DOM coating on the NPs resulted in reduction of adsorption capacity by ˜54 and ˜70%, respectively). Our results suggest that the DOM coatings alter the arrangements of the NPs in the dye solution, creating the active surface sites less accessible for adsorption. Furthermore, the reduction of the adsorption efficiency for the NPs toward dyes with simultaneously addition of DOM is probably due to blockage of the active surface sites by the DOM molecules and the competition between the dye and the DOM.

Publisher's Version

Last updated on 07/11/2019