Publications by Year

<embed>

Publications by Authors

225deacc779a0d05aa0cd6165edfbbb9

Recent Publications

Contact Us

The Robert  H Smith Faculty
of Food, Agriculture and Environment
P.O. Box 12  Rehovot 76100 
ISRAEL

tel: 972-8-9489340
fax: 972-8-9475181
neomim@savion.huji.ac.il

Publications

2018
Mau, Y. ; Zelnik, Y. ; Meron, E. Drought resilience of dryland ecosystems under spatial periodic forcing. In EGU General Assembly Conference Abstracts; EGU General Assembly Conference Abstracts; 2018; Vol. 20, pp. 9249.
Kramer, I. ; Mau, Y. Salinity and Sodicity Dynamics in Soils: A Simplified Model. AGU Fall Meeting Abstracts 2018.
2016
Mau, Y. ; Porporato, A. Optimal control solutions to sodic soil reclamation. Advances in Water Resources 2016, 91, 37 - 45. Publisher's VersionAbstract
We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang–bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang–bang solution is also shown to work for the reclamation of other soil conditions, such as saline–sodic soils. The novelty in our modeling approach is the capability of searching the entire “strategy space” for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.